Archive
Year | 2013 (Volume: 20) |
Issue | 89 |
Pages | 1-47 |
Cover Page | Cover Page |
Articles
1 | Modification of Ring Spinning Machine for Producing Core Yarn Containing Elastane DOI:10.7216/130075992013208901 Authors : Deniz VURUŞKAN, Osman BABAARSLAN, İlhami İLHAN Article Detail | Abstract | Full Text | References |
2 | A Comparative Study on the Physical Properties of Hybrid Yarns Containing Copper Wire DOI:10.7216/130075992013208902 Authors : Hüseyin GAZİ ÖRTLEK, Çiğdem ÇALIŞKAN, Rıfat KURBAN Article Detail | Abstract | Full Text | References |
3 | Applicability of Lubricating Acrilic Syntans in Vegetable Tanned Saddlery Leathers DOI:10.7216/130075992013208903 Authors : Altan AFŞAR, Hasan OZGÜNAY, Onur YILMAZ, Arife CANDAŞ ADIGÜZEL ZENGİN, Gökhan ZENGİN Article Detail | Abstract | Full Text | References |
4 | Evaluation of Production Processes and Operator Performance of Ironing Deparment in Suit Production DOI:10.7216/130075992013208904 Authors : Can ÜNAL Article Detail | Abstract | Full Text | References |
5 | Polymeric Nanocomposites and Their Textile Applications DOI:10.7216/130075992013208905 Authors : Ayşin DURAL EREM, Gülay ÖZCAN Article Detail | Abstract | Full Text | References |
References
1. Yeşilkütük, N., (2000), Ring İplik Makinelerinde Sargılı İpliklerin (Core Yarn) Eğrilmesinde Bazı Üretim Parametrelerinin İplik Özelliklerine Etkilerinin İncelenmesi, Yüksek Lisans Tezi, Uludağ Üniversitesi, Fen Bilimleri Enstitüsü, Bursa, (73s).
2. Babaarslan, O., (2001), Method of Producing a Polyester/Viscose Core-Spun Yarn Containing Spandex Using a Modified Ring Spinning Frame, Textile Research Journal, 71(4):367-371. http://dx.doi.org/10.1177/004051750107100415
3. http://www.textileworld.com/Articles/2000/February/Knitting_Apparel/Stretching_For_Success.html (2012)
4. Örtlek, H. G., Babaarslan, O., (2002), Elastan İçerikli Kombine İplik Üretimi ve Bu İpliklerin Kullanımında Karşılaşılan Problemler, Tekstil &Teknik Dergisi, 212:114-138.
5. Vuruşkan, D., (2010), Elastan çerikli plik Üretmek Üzere Modifiye Edilen Ring Makinasnda Üretim Deikenlerinin Optimizasyonu ve plik Kalitesi Üzerindeki Etkisi, Doktora Tezi, Çukurova Üniversitesi Fen Bilimleri Enstitüsü, Adana,(235 s).
6. Babaarslan, O., İlhan, ., Vuruşkan, D., (2009), Fantezi (Corespun ve antuklu) İplik Üretimi için Konvansiyonel Ring İplik Eğirme Makinasının Modernizasyonu, Proje No: 107M134, TÜBİTAK Araştırma Projesi Sonuç Raporu, Adana, (81 s).
7. İlhan, ., (2010), Ring İplik Makinesi için Elektronik Kontrollü Şantuk Sisteminin Geliştirilmesi ve Şantuklu İplik Özelliklerinin İncelenmesi, Doktora Tezi, Çukurova Üniversitesi Fen Bilimleri Enstitüsü, Adana, (319 s).
References
1. Depla, D., Segers, S., Leroy, W., Hove, T. V. and Parys, M. V., (2011), Smart Textiles: An Explorative Study of The Use of Magnetron Sputter Deposition, Textile Research Journal,81(17), 1808–1817. http://dx.doi.org/10.1177/0040517511411966
2. Ortlek H, G., K_l_c G., Okyay G., Bilget O., (2011),Investigation of Different Ring Spinning Methods for Producing Core Spun Yarns Containing Stainless Steel Wire, Tekstil ve Konfeksiyon, vol.21, pp. 225-235.
3. Baxes, G. A., (1994), Digital Image Processing, Principles And Applications, John Wiley&Sons, Inc., 452s.
4. Yaman, K., Sarucan, A., Atak, M., Akturk, N., (2001), Preparation Of Data For Dynamic Scheduling Using Image Processing And Arima Models, The Magazine of Gazi University Engineering and Architecture Faculty, 16(1), 19-40.
5. Gonzales, C. R., Woods E. R., Eddins L. S., (2009), Digital Image Processing Using Matlab, Prentice Hall, 597s.
6. Onhon, N., (2006), Scene Change Detection, (Unpublished master’s thesis), Istanbul Technical University, _stanbul, 7-9.
7. http://www.brucelindbloom.com, June, 2011.
References
1. Jones, C., 2000, The Manufacture of Vegetable Tanned Light Leathers Part 1, World Leather, April.
2. Barlow, J.R.; Lesko, P.M., 1993, Further Advances in Acrylic Retan/Fatliquors- Technical Note, Journal of the American Leather Chemists Association , 88, 217-225.
3. Haribabu, V., Saikumar, C., Rajaraman, R., Sumathi, S.C., Muralidhara Rao, V.V., 1993, Studies on Newer Lubricating and Water Resistant Paraffinic-Polymer Adducts for Leather application, XXII IULTSC Congress, 16-20 November.
4. El A’mma, A.G., Hodder, J.J., Lesko, P., 1991, A New Lubricating Acrylic Syntan, JALCA, 86, 1-7.
5. El A’mma, A.G., Hodder, J.J., Ward, G.J., 1996, Lubricating Acrylic Syntans A Review Of The Technology And Practical Applications, Journal of the American Leather Chemists Association , 91, 237-245.
6. Hodder, J.J., El A’mma, A.G., Lesko, P.M.; 1996, Expanding The Performance Range of Lubricating Syntan Technology, Lubricating Acrylic Syntans A Review Of The Technology And Practical Applications, Journal of the American Leather Chemists Association , 91, 237-245.
7. El A’mma, A., 2003, High Exhaust Acrylic Chemistry, JALCA, 98, 1-5.
8. Smit&Zoon, 2009, Polymer softeners versus conventional fatliquoring, Leather International, July, 18-19.
9. Madhan, B.; Jayakumar, R.; Muralidharan, C.; 2001, Improvements in Vegetable Tanning – Can Acrylics be Co-Tanning Agents?, Journal of the American Leather Chemists Association, 96, 120-126.
10. Lakshminarayana, Y., Jaisankar, S.N., Ramalingami, S., Radhakrishnan, G., 2002, A Novel Water Dispersible Bentonite – Acrylic Graft Copolymers As Filler Cum Retanning Agent, Journal of the American Leather Chemists Association , 97, 14-21.
11. Palop, R., Marsal, A., 2004a, Factors Influencing the Waterproofing Behaviour of Retanning-Fatliquoring Polymers. Part I, Journal of the American Leather Chemists Association, 99, 409-415.
12. Palop, R., Marsal, A., 2004b, Factors Influencing the Waterproofing Behaviour of Retanning-Fatliquoring Polymers. Part II, Journal of the American Leather Chemists Association , 461-467.
13. TS EN ISO 2418, 2006, Mamul Deriler Laboratuvar Analizleri İçin Numune Alma, Türk Standartlar Enstitüsü (TSE), Ankara.
14. TS EN ISO 2419, 2006, Deri-Fiziksel ve Mekanik Deneyler- Numune Hazırlama ve Şartlandırma, Türk Standartlar Enstitüsü (TSE), Ankara.
15. TS 4117 EN ISO 2589, 2006, Deri-Fiziksel ve Mekanik Deneyler-Kalınlık Tayini, Türk Standartlar Enstitüsü (TSE), Ankara.
16. TS EN ISO 3376:2011(EN) :2012, Çekme Mukavemeti ve Uzama Yüzdesinin Tayini, Türk Standartlar Enstitüsü (TSE), Ankara.
17. TS 4118-2 EN ISO 3377-2, 2005, Yırtılma Yükü Tayini - Bölüm 2: Çift Kenar Yırtığı, Türk Standartlar Enstitüsü (TSE), Ankara.
18. TS 4121 EN ISO 2420, 2005, Deri – Fiziksel ve Mekanik Deneyler – Görünür Yoğunluk Tayini, Türk Standartlar Enstitüsü (TSE), Ankara.
19. TS 4123 EN ISO 2417, 2005, Deriler - Fiziksel ve Mekanik Deneyler - Statik Su Absorpsiyonunun Tayini, Türk Standartlar Enstitüsü (TSE), Ankara.
20. TS EN ISO 14268, 2004, Deri - Fiziksel ve Mekanik Deneyler - Su Buhar Geçirgenliğinin Tayini, Türk Standartlar Enstitüsü (TSE), Ankara.
21. Oehler, R. and Kilduff, T., 1949, Treatment of Leather with Synthetic Resins, Part of the Journal of Research of the National Bureau of Standards, 42, 63-73.
References
1. Kurt M., Dağdeviren M., (2003), İş Etüdü, Gazi Kitapevi Yayınları, Ankara.
2. Kanawaty G., Çev. Akal Z., (1991), İş Etüdü (ILO), Milli Prodüktivite Merkezi Yayınları:29 Ankara, s. 207–218.
3. Freivalds Aa., Niebel B. W., (2009), Niebel’s Methods, Standarts, and Work Design, Twelfth Edition, Mc-Graw Hill, Singapore, s. 545-576.
4. Timur, H., (2005), İş Ölçümü, İş Planlaması, Verimlilik (Kuramsal ve Örnek Uygulamalı), Ankara, s. 49-117.
5. Barnes, M. R., (1957), Work Sampling, John Wiley & Sons. Inc., 2nd edition, New York.
6. REFA, İş Etüdü Yöntem Bilgisi, 1988, MPM Yayınları: 544, Ankara.
7. Güneşoğlu S., Meriç B., (2007), The Analysis Of Personal And Delay Allowances Using Work Sampling Technique In Sewing Room Of A Clothing Manufacturer, International Journal of Clothing Science and Technology Vol:19, Nr:2, pp:145.
8. Kiremitci S., Meriç B., (2001), Konfeksiyon İşletmelerinde Dağılım Zamanları Üzerine Bir Araştırma, Tekstil ve Konfeksiyon, Sayı 1, S. 44-56.
9. Karyağdı, N., (2001), Toplam Kalite Yönetimi ve Türk Vergi İdaresi, Ankara Sanayi Odası Yayını, No: 51.
10. McNiven P, Hodnett E, O'Brien-Pallas LL., (1992), Supporting women in labor: a work sampling study of the activities of labor and delivery nurses. Birth. Mar;19(1):3-8.
11. Öncer M, Asil N., (1992), Örneklemesi Yöntemiyle Dört Modern Mobilya Fabrikasnda Kayp Zamanlarn Saptanmas ve Önleme Yollar, MPM Yaynlar:458, s.63,70, Ankara
12. Timur, H., (2005), İş Ölçümü, İş Planlaması, Verimlilik (Kuramsal ve Örnek Uygulamalı), Siyasal Kitapevi, Ankara.
13. Barnes, M. R., (1968), Motion and Time Study: Design and Measurement of Work, John Wiley & Sons. Inc., 6th edition, New York, s. 511-548.
References
1. Kut, D. ve Güneşoğlu, C. (2005). Nanoteknoloji ve Tekstil Sektöründeki Uygulamalar, Tekstil & Teknik Dergisi, Şubat, 224-230.
2. Özdoğan,E.,Demir,A. Seventekin, N. (2006). Nanoteknoloji ve Tekstil Uygulamaları, Tekstil ve Konfeksiyon, 3, 159- 168.
3. Kathirvelu, S., D’Souza, L. ve Dhurai,B.(2008). Nanotechnology Applications in Textile, Indian Journal of Science and Technology, 1 (5), 1-10.
4. Temirel, A. ve Palamutçu, S. (2011). Fonksiyonel Tekstiller III: Tekstil Yüzeylerinde Fotokatalitik Etki ve Kendi Kendini Temizleme, Tekstil Teknolojileri Elektronik Dergisi, 5 (2), 35-50.
5. Ajayan, P.M., Schadler, L.S. Braun, P.V. (2003). Nanocomposite Science and Technology, Wiley, Newyork, USA.
6. Şen, F., Palancıoğlu, H. Aldaş, K. (2010).Polimerik Nanokompozitler ve Kullanım Alanları, Makine Teknolojileri Elektronik Dergisi, 7(1), 111-118.
7. Chen, B. (2004). Polymer-Clay Nanocomposites: an Overview with Emphasis on Interaction Mechanisms, British Ceramic Transactions, 103 (6), 241-249.
8. Brody, A.L. (2003). Nano, Food Packaging Technology, Food Technology, 57 (12), 52-54.
9. Erdem, N., Erdoğan U. H. ve Akşit, A. 2008. Nanokompozit polipropilen filamentlerin üretimi ve özellikleri, Tekstil ve Mühendis, 15(96), 14-22.
10. Mai, W. Y. ve Yu Z. Z. (2006). Polymer Nanocomposites, Woodhead Publishing Ltd., Cambridge, England.
11. http://www.che.vt.edu/Wilkes/electrospinning.htm
12. Kim, H.W., Lee, H.H. Knowles, J.C. (2006). Electrospinning biomedical nanocomposite fibers of hydroxylapatite/ poly (lactic acid) for bone regeneration, Journal of Biomedical Materials Research Part A, 79A (3), 643-649.
13. Yang, F., Ou, Y., Yu, Z. (1998). Polyamide 6/silica nanocomposites prepared by in situ polymerization Journal of Applied Polymer Science, 69(2), 355-361.
14. Maeda, H. (1992). The Tumor Blood Vessel as an Ideal Target for Macromolecular Anticancer Agents, Journal of Controlled Release, 19, 315-324.
15. Matsui, I. (2005). Nanoparticles for electronic device applicatios: a brief review, Journal of Chemical Engineering of Japan, 38 (8), 535-546.
16. Nihara, K. (1991). New Design Concept of Structural Ceramic-CeramicNanocomposites, Journal of Ceramic Society of Japan, 99 (10), 974-982.
17. Goldstain, A. (1997). Handbook of Nanophase Materials, Marcel Dekker Inc, Newyork, USA.
18. Miller, J.C., Serrato, R., Represas-Cardenas, J. M. ve Kundahl, G. (2004). The Handbook of Nanotechnology, John Wiley&Sons Inc., New Jersey, USA.
19. Gonsalves, K.E., Rangarajan, S.P., Wang, J. (2002). Chemical Synthesis of Nanostructured Metals, Ed: Nalwa, H.S. Metal Alloys and Semiconductors in Nanostructured Materials and Nanotechnology, Academic Press, USA.
20. Sergeev, B.E.(2006).Nanochemistry, Elsevier Science, Amsterdam, Netherlands.
21. http://www.azonano.com/details.asp?ArticleID=1079
22. Gürmen, S. ve Ebin B. (2008). Nanopartiküller ve Üretim Yöntemleri -1, Metalurji Dergisi, 150,31-38, TMMOB Metalurji Mühendisleri Odas.
23. Coleman, J.N., Khan, U., Blau, W.J. ve Gun’ko, Y. K. (2006). Small but Strong: A Review of the Mechanical Properties of Carbon Nanotube-Polymer Composites, Carbon, 44 (9), 1624-1652.
24. Zhao, X., Ohkohchi, M., Wang, M., Lijima, S., Ichihashi, T. ve Ando, Y. (1997). Preparation of high-grade carbon nanotubes by hydrogen arc discharge, Carbon, 35 (6), 775-781.
25. Rochefort, A., Avouris, P., Lesage, F. Salahub, D. R. (1999). Electrical and Mechanical Properties of Distorted Carbon Nanotubes, Physical Review B, 60 (19), 13824–13830.
26. Dresselhaus, M.S., Dresselhaus, G. (1996). Science of Fullerenes and Carbon Nanotubes, Academic Press, San Diego, USA.
27. Vergaro, V., Abdullayev, E., Lvov, Y.M., Zeitoun, A., Cingolani, R., Rinaldi, R., ve Leporatti, S. (2010). Ctocompatibility of Uptake of Halloysite Clay Nanotubes, Biomacromolecules, 11, 820-826.
28. http://phys.org/news10244.html
29. Cireli, A., Kutlu, B., Onar, N., Erkan, G. (2006), Tekstilde İleri Teknolojiler, Tekstil ve Mühendis, 13 (61), 7-20.
30. http://openi.nlm.nih.gov/detailedresult.php?img=3292087_sensors-09-07866f11&query=the&fields=all&favor=none&it=none&sub=none&uniq=0&sp=none&req=4&simCollection=2667610_kjr-7-243-g001&npos=8&prt=3.
31. Demir, A., ve Oruç, F., (2004). Polimer Esaslı Nanoliflerin Üretimi, Tekstil Araştırma Dergisi, (2), 28-30.
32. Hagewood, J. (2004). Polimerik Nanoelyaf Üretimi, Tekstil Maraton Dergisi, 4, 18-20.
33. Süpüren, G., Çay, A., Kanat, E., Kırcı, T., Gülümser, T.,Tarakçıoğlu, I., (2007). Nano Lifler (Bölüm 2), Tekstil ve Konfeksiyon, (2), 83-89.
34. Gowri, S., Almeida, L., Amorim, T., Carnerio, N., Souto, A.P. Esteves, M.F.(2010).Polymer Nanocomposite for Multifunctional Finishing of Textiles – a Review, Textile Research Journal, 80 (13), 1290-1306.
35. Ming, W., Wu, D., Van Benthem, R., Dewith,G.,(2005). Superhydrophobic Films from Raspberry Like Particles, Nano Lett. 5, 2298–2301
36. Hoefnagels, H. F., Wu, D., Dewith, G., Ming, W., (2007). Biomimetric Superhydrophobic and Highly Oleophobic Cotton Textiles, Langmuir. 23, 13158–13163
37. Chao, H.X., Shun, T.J., Jing, Z. L., Hong, Z. C., Mang, W., (2008). Preparation of Superhydrophobic Surfaces on Cotton Textiles, Sci. Technol. Adv. Mater. 9, 035001–
035008 .
38. Qufu, W., Wangyan, Y., Robert, R., Mather, X.W. (2007). Preparation and Characterization of Titanium Dioxide Nanocomposite Fibers, J. Mater. Sci. 42, 8001–8005
39. Dickson, D. P. E. (1999). Nano structured Magnetism in Living Systems, Journal of Magnetism and Magnetic Materials, 203 (1), 46-49.
40. Dahl, J.A., Maddux, B.L., ve Hutchison, J.E. (2007). Towards Greener Nanosynthesis, Chemical Reviews, 107, 2228-2269.
41. Sharma, V.K., Ygard, R.A. Lin, Y. (2009). Silver Nanoparticles: Green Synthesis and Their Antimicrobial Activities, Advances in Colloid and Interface Science, 145, 83-96.
42. Ramirez, M.I. Bashir, S., Luo, Z., Liu, J.L. (2009). Green Synthesis and Characterization of Polymer-Stabilized Silver Nanoparticles, Colloids and Surfaces B: Biointerfaces, 73, 185-191.
43. Morones, J.R., Elechiguerra, J.L., Camacho, A., Holt, K., Kouri, J.B., Ramirez, J.T.,Yacaman, M.J. (2005). The Bacteriosidal Effect of Silver Nanoparticles, Nanotechnology, 16, 2346-2353.
44. Russell, A.D. ve Hugo, W.B. (1994). Antimicrobial Activity and Action of Silver, Progress in Medicinal Chemistry, 31, 351-370.
45. Dastjerdi R., Mojtahedi, M. R.M., Shoshtari, A.M., Khosroshahi, A., ve Moayed, A.J. (2009). Fiber to Fabric Processability of Silver / Zinc Loaded Nanocomposite Yarns, Textile Research Journal, 79 (12), 1099-1107.
46. Kvitek, L., Panacek, A., Soukupova, J., Kolar, M., Vecerova, R., Prucek, R., Holecova, M. ve Zboril, R. (2008). Effect of Surfactants and Polymer on Stability and Antibacterial Activity of Silver Nanoparticles, The Journal of Physical Chemistry C, 112, 5825-5834.
47. Dallas, P., Sharma, V.K. and Zboril, R. (2011). Silver polymeric nanocomposites as advanced antimicrobial agents: Classification, synthetic paths, applications, and perspectives, Advances in Colloid and Interface Science, 166 (1-2), 119–135.
48. Rawat J., Rana S., Srivastava R., Devesh R., ve Misra K. (2007). Antimicrobial activity of composite nanoparticles consisting of titania photocatalytic shell and nickel ferrite magnetic core, Material Science & Engineering C, 27, 540- 545.
49. Pascual J., Camassel J., ve Mathieu H. (1978). Fine Structure in the Intrinsic Absorption Edge of TiO2, Physical Review B, 18 (10), 5606-5614.
50. Amezaga - Madrid, P., Silveyra-Morales, R., Cordoba- Fierro, L., Nevarez Moorillón, G.V., Miki-Yoshida, M. M., Orrantia-Borunda E. ve SolÃs, F. J. (2003). TEM evidence of ultrastructural alteration on Pseudomonas aeruginosa by photo catalytic TiO2 thin films, Journal of Photochemistry and Photobiology B: Biology, 70 (1), 45-50.
51. Prairie M. R., Evans L. R., Stange B. M., Martinez S. L. (1993). An investigation of TiO2 photocatalysis for the treatment of water contaminated with metals and organic
chemicals, Environmental Science and Technololgy, 27 (9), 1776-1782.
52. Jaeger, C. D. ve Bard, A. J. (1979). Spin trapping and electron spin resonance detection of radical intermediates in the photodecomposition of water at titanium dioxide particulate systems, The Journal of Physical Chemistry, 83 (24), 3146-3152.
53. Carp, O., Huisman C. L., Reler A. (2004). Photoinduced Reactivity of Titanium Dioxide, Progress in Solid State Chemistry, 32 (1), 33-177.
54. Rana, S., ve Misra, R. D. K. (2005). The Antimicrobial Activity of Titania-Nickel Ferrite Composite Nanoparticles, Journal of the Minerals, metals, and Materials Society, 57, 65-69.