Archive
Year | 2015 (Volume:22) |
Issue | 100 |
Pages | 1-68 |
Cover Page | Cover Page |
Articles
1 | 100 ISSUES, 29 YEARS.. Authors : Editor Article Detail | Abstract | Full Text |
2 | Spinnable Carbon Nanotubes and Technical Yarns Produced by These Special Fibers DOI: 10.7216/1300759920152210001 Authors : Fatma GÖKTEPE Article Detail | Abstract | Full Text | References |
3 | An Investigation About Liquid Transfer Characteristics of Nonwoven Wet Wipes Including Natural Components DOI: 10.7216/1300759920152210002 Authors : Sebile PULAN, Sibel KAPLAN, Seyhan ULUSOY Article Detail | Abstract | Full Text | References |
4 | An Investigation on Antibacterial Activities of Nonwovens Treated with Ozonated Oils DOI: 10.7216/1300759920152210003 Authors : Burcu Sancar BEŞEN, Onur BALCI, Mehmet ORHAN, Cem GÜNEŞOĞLU, İ. İrem TATLI Article Detail | Abstract | Full Text | References |
5 | Carbon/Polyamide 12 Prepreg Production DOI: 10.7216/1300759920152210004 Authors : Seçkin ERDEN, Hasan YILDIZ Article Detail | Abstract | Full Text | References |
6 | Measurement of the Drape of Woven Fabrics Including Metal Wire-Wrapped Hybrid Yarns by Using Image Analysis DOI: 10.7216/1300759920152210005 Authors : Nazan ERDUMLU, Canan SARIÇAM Article Detail | Abstract | Full Text | References |
7 | The Effect of Drawing Ratio and Cross-Sectional Shapes on the Properties of Polypropylene CF and BCF Yarns DOI: 10.7216/1300759920152210006 Authors : Mustafa KEBABCI, Osman BABAARSLAN,Selcen ÖZKAN HACIOĞULLARI, Abdurrahman TELLİ Article Detail | Abstract | Full Text | References |
8 | Effects of Different Industrial Washing Processes on Strength and Physical Properties of Denim Fabrics DOI: 10.7216/1300759920152210007 Authors : Tuğba ARIKAN, Büşra ÇAVUŞOĞLU, Yasemin ALVER, Zübeyde Ece ÇİL, M. Şahin AKAYA, Burçak KARAGÜZEL KAYAOĞLU Article Detail | Abstract | Full Text | References |
References
1.
De Volder, M.F.L., Tawfick, S.H., Baughman, R.H., Hart, A.J., (2013),
Carbon Nanotubes: Present and Future Commercial Applications, Science,
339, 535-539. http://dx.doi.org/10.1126/science.1222453 |
||||
2.
Monthioux, M., Kuznetsov, V.L., (2006), Who Should Be Given The Credit
For The Discovery Of Carbon Nanotubes?, Carbon, 44, 1621-1622. http://dx.doi.org/10.1016/j.carbon.2006.03.019 |
||||
3. Erkoç, Ş., (2001), Karbon Nanoyapılar: Toplar, Tüpler, Çubuklar, Halkalar, TÜBİTAK Bilim ve Teknik Dergisi, Ocak Sayısı, 46-51. | ||||
4. Özdoğan, E., Demir, A., Seventekin, N., (2006), Nanoteknoloji ve Tekstil Uygulamaları, Tekstil ve Konfeksiyon, 3, 159-168. | ||||
5. Küçükyıldırım, B.O., Eker, A.A., (2012), Karbon Nanotüpler, Sentezleme Yöntemleri ve Kullanım Alanları, Mühendis ve Makina, 53, 630, 34-39. | ||||
6. Sarıer, N., Önder, E., (2012), Karbon Nano Tüplerin Eşsiz Özellikleri ve Kullanım Alanları, Cumhuriyet Bilim Teknik Dergisi, Mayıs sayısı (11), 12. | ||||
7. Melemez, F.F., (2012), An Experimental Study On The Incorporation Of Carbon Nanotubes Into Resin Transfer Molded Composites, Yüksek Lisans Tezi, Sabancı Üniversitesi. | ||||
8. Geim, A.K., Novoselov, K.S. (2007), The Rise of Graphene, Nature, 6, 183-191. http://dx.doi.org/10.1038/nmat1849 |
||||
9. Iijima, S., (1991), Helical Microtubules of Graphitic Carbon, Nature, 354, 56-58. http://dx.doi.org/10.1038/354056a0 |
||||
10. Saito, R.F. (1992), Electronic Structure Of Chiral Graphene Tubules, Applied Physics Letters, 60, 2204-2206. http://dx.doi.org/10.1063/1.107080 |
||||
11. Eser, H.M., (2006), Karbon Nanotüp-Sıvı Kristal Karışımlarının Elektriksel Özellikleri, Yüksek Lisans Tezi, Gebze Yüksek Teknoloji Enstitüsü. | ||||
12. Jiang, K., Li, Q., Fan, S. (2002), Nanotechnology: Spinning Continuous Carbon Nanotube Yarns-Carbon Nanotubes Weave Their Way Into A Range Of Imaginative Macroscopic Applications, Nature, 419, 6909, 801. | ||||
13.
Zhang, M., Atkinson, K.R., Baughman, R.H., (2004), Multifunctional
Carbon Nanotube Yarns by Downsizing an Ancient Technology, Science, 306,
1358-1361. http://dx.doi.org/10.1126/science.1104276 |
||||
14.
Zhang, M., Fang S., Zakhidov A.A., Lee S.B., Aliev A.E., Williams C.D.,
(2005), Strong, Transparent, Multifunctional, Carbon Nanotube Sheets,
Science, 309 (5738), 1215-1219. http://dx.doi.org/10.1126/science.1115311 |
||||
15.
Li, Q., Zhang, X.F., DePaula, R.F., Zheng, L., Zhao, Y., Stan, L.,
Holesinger, T. G., Arendt, P.N., Peterson, D. E., Zhu, Y.T., (2006),
Sustained Growth Of Ultralong Carbon Nanotube Arrays For Fiber Spinning,
Advanced Materials, 18 (23), 3160-3163. http://dx.doi.org/10.1002/adma.200601344 |
||||
16.
Atkinson, K., Hawkins, S., Huynh, C., Skourtis, C., Dai, J., Zhang, M.,
Fang, S., Zakhidov, A.A., Lee S., Aliev A.E., Williams C., Baughman R.,
(2007), Multifunctional Carbon Nanotube Yarns And Transparent Sheets:
Fabrication, Properties and Applications, Physica B, 394, 339–343. http://dx.doi.org/10.1016/j.physb.2006.12.061 |
||||
17.
Zhang, S., Zhu, L., Minus, M.L., Chae, H.G., Jagannathan, S., Wong,
C.P., Kowalik, J., Roberson, L.B., Kumar, S., (2008), Solid-State Spun
Fibers And Yarns From 1-mm Long Carbon Nanotube Forests Synthesized By
Water-Assisted Chemical Vapor Deposition, Journal of Material Science,
43 (13), 4356-4362. http://dx.doi.org/10.1007/s10853-008-2558-5 |
||||
18.
Liu, K., Sun, Y.H., Chen, L., Feng, C., Feng, X.F., Jiang, K.L., Zhao,
Y., Fan, S., (2008), Controlled Growth Of Super- Aligned Carbon Nanotube
Arrays For Spinning Continuous Unidirectional Sheets With Tunable
Physical Properties, Nano Letters, 8 (2), 700-705. http://dx.doi.org/10.1021/nl0723073 |
||||
19.
Nakayama, Y., Synthesis, Nanoprocessing and Yarn Application of Carbon
Nanotubes (2008), Japanese Journal of Applied Physics, Part 2, 47 (10),
8149-8156. http://dx.doi.org/10.1143/JJAP.47.8149 |
||||
20.
Mallik, N., Schulz, M. J., Shanov, V.N., Hurd, D., Chakraborty, S.,
Jayasinghe, C., Abot, J., Song, A., (2009), Study On Carbon Nano-Tube
Spun Thread As Piezoresistive Sensor Element, Advanced Materials
Research, 67, 155-160. http://dx.doi.org/10.4028/www.scientific.net/AMR.67.155 |
||||
21.
Tran, C.D., Humphries, W., Smith, S., Huynh, C., Lucas, S., (2009),
Improving The Tensile Strength Of Carbon Nanotube Spun Yarns Using a
Modified Spinning Process, Carbon, 47, 2662-2670. http://dx.doi.org/10.1016/j.carbon.2009.05.020 |
||||
22.
Iijima, T., Oshima, H., Hayashi, Y., Suryavanshi, U., Hayashi, A.,
Tanemura, M., Oshima, H., (2012), In-Situ Observation Of Carbon Nanotube
Fiber Spinning From Vertically Aligned Carbon Nanotube Forest,
Diamond&Related Materials, 24, 158-160. http://dx.doi.org/10.1016/j.diamond.2012.01.002 |
||||
23.
Lepro, X., Lima, M.D., Baughman, R.H., (2010), Spinnable Carbonnanotube
Forests Grown On Thin, Flexible Metallic Substrates, Carbon, 48,
3621-3627. http://dx.doi.org/10.1016/j.carbon.2010.06.016 |
||||
24. Inoue, Y., Kakihata, K., Hirono, Y., Horie, T., Ishida, A., Mimura, H., (2008), One-step Grown Aligned Bulk Carbon Nanotubes by Chloride Mediated Chemical Vapour Deposition, Applied Physics Letters, 92, 213113,1-3. | ||||
25.
Luo, Y., Gong, Z., He, M., Wang, X., Tang, Z., Chen, H., (2012),
Fabrication Of High-Quality Carbon Nanotube Fibers For Optoelectronic
Applications, Solar Energy Materials&Solar Cells, 97, 78–82. http://dx.doi.org/10.1016/j.solmat.2011.09.036 |
||||
26.
Behaptu, N., Young, C.C., Tsentalovich, D.E., Kleinerman, O., Wang, X.,
Ma, A.W.K., Bengio, E.A., Waarbeek, R.F., Jong, J.J., Hoogerwerf, R.E.,
Fairchild, S.B., Ferguson, J.B., Maruyama, B., Kono, J., Talmon, Y.,
Cohen, Y., Otto, M.J., Pasquali, M., (2013), Strong, Light,
Multifuncyional Fibers of Carbon Nanotubes with Ultrahigh Conductivity,
Science, 339, 182-186. http://dx.doi.org/10.1126/science.1228061 |
||||
27.
Peigney, A., Laurent, C., Flahaut, E., Bacsa, R.R., Rauset, A., (2001),
Specific Surface Area of Carbon Nanotubes and Bundles of Carbon
Nanotubes, Carbon, 39, 507-514. http://dx.doi.org/10.1016/S0008-6223(00)00155-X |
||||
28. Mittal, V. (2011), Polymer Nanotube Nanocomposites, Synthesis, Properties and Applications, Scrivener Publishing LLC. | ||||
29.
Koziol, K., Vilatela, J., Moisala, A., Motta, M., Cunniff, P., Sennett,
M., Windle, A., (2007), High-Performance Carbon Nanotube Fiber,
Science, 318, 1892-1895. http://dx.doi.org/10.1126/science.1147635 |
||||
30.
Zhang, X., Jiang, K., Feng, C., Liu, P., Zhang, L., Kong, J., Zhang,
T., Li, Q., Fan, S., (2006), Spinning and Processing Continuous Yarns
from 4-InchWafer Scale Super-Aligned Carbon Nanotube Arrays, Advanced
Materials, 18, 1505- 1510. http://dx.doi.org/10.1002/adma.200502528 |
||||
31.
Zhang, X., Li, Q., Tu, Y., Li, Y., Coulter J., Zheng, L., Zhao Y., Jia
Q., Peterson, D., Zhu, Y., (2007), Strong Carbon- Nanotube Fibers Spun
from Long Carbon-Nanotube Arrays, Small, 3 (2), 244-248. http://dx.doi.org/10.1002/smll.200600368 |
||||
32.
Ericson, L., Ramesh, S., Fan, H., Wang, Y., Davis, V., Vavro, J., Zhou,
W., Guthy, C., Fischer, J., Hauge, R., Pasquali, M., Hwang, W., Hauge,
R.H., Fischer, J.E., Smalley, R.E., (2004), Macroscopic, Neat,
Single-walled Carbon Nanotube Fiber, Science, 305, 1447-1450. http://dx.doi.org/10.1126/science.1101398 |
||||
33. Capps, R.C., (2011), Carbon Nanotube Fibers And Ribbons Produced By A Novel Wet-Spinning Process, Doktora Tezi, Dallas Teksas Üniversitesi, A.B.D. | ||||
34.
Zhong, X., Li, Y., Liu, Y, Qiao, X., Feng, Y., Liang, J., Jin, J., Zhu,
L., Hou, F., Li, J., (2010), Continuous Multilayered Carbon Nanotube
Yarns, Advanced Materials, 22, 692-696. http://dx.doi.org/10.1002/adma.200902943 |
||||
35.
Ghemes, A., Minami, Y., Muramatsu, J., Okada, M. Mimura, H., Yoku
Inoue, Y., (2012), Fabrication and Mechanical Properties of Carbon
Nanotube Yarns Spun from Ultra Long Multi-walled Carbon Nanotube Arrays,
Carbon, 50, 4579- 4587. http://dx.doi.org/10.1016/j.carbon.2012.05.043 |
||||
36.
Liu, K., Sun, Y., Zhou, R., Zhu, H., Wang, J., Liu, L., Fan, S., Jiang,
K., (2010), Carbon Nanotube Yarns With High Tensile Strength Made By A
Twisting And Shrinking Method, Nanotechnology, 21 (4), 1-7. http://dx.doi.org/10.1088/0957-4484/21/4/045708 |
||||
37.
Jayasinghe, C., Li, W., Song,Y., Abot, J.L., Shanov, V.N., Fialkova,
S., Yarmolenko, S., Sundaramurthy, S., Chen,Y., Cho, W., Chakrabarti,
S., Li, G., Yun, Y., Schulz, M.J., (2010), Nanotube Responsive
Materials, MRS Bulletin, 53, 682-692. http://dx.doi.org/10.1557/mrs2010.680 |
||||
38. Miao, M., Electrical Conductivity Of Pure Carbon Nanotube Yarns, (2011), Carbon, 49 (12), 3755-3761. http://dx.doi.org/10.1016/j.carbon.2011.05.008 |
||||
39.
Jakubinek, M.B., Johnson, M.J., White, M.A., Jayasinghe, C., Li, G.,
Cho, W., Shulz, M., Shanov, V., (2012), Thermal and Electrical
Conductivity of Array-Spun Multi-Walled Carbon Nanotube Yarns, Carbon,
50, 244-248. http://dx.doi.org/10.1016/j.carbon.2011.08.041 |
||||
40.
Lima, M., Fang, S., Lepró, X., Lewis, C., Ovalle-Robles, R.,
Carretero-González J., Castillo-MartÃnez E., Kozlov M., Oh J., Rawat N.,
Haines, C., Haque, M., Aare, V., Stoughton, S., Zakhidov, A.A.,
Baughman R.H., (2011), Biscrolling Nanotube Sheets and Functional Guests
into Yarns, Science 331, 51-55. http://dx.doi.org/10.1126/science.1195912 |
||||
41.
Lima, M., Li, N., Andrade, M. J., Fang, S., Oh, J., Spinks, G.M.,
Kozlov, M.E., Haines C. S., Dongseok Suh, D., Foroughi, J., Kim, S.J.,
Chen, Y., Ware, T., Shin, M.K., Machado, L.D., Fonseca, A. F., Madden,
J. D. W., Voit, W.E., Galvão, D. S., Baughman, R.H., (2012),
Electrically, emically, and Photonically Powered Torsional and Tensile
Actuation of Hybrid Carbon Nanotube Yarn Muscles, Science, 338, 928-932. http://dx.doi.org/10.1126/science.1226762 |
||||
42.
Haines, C.S., Lima, M.D., Li, N., Spinks, G.M., Foroughi, J., Madden,
J.D.W., Kim, S.H., Fang, S., de Andrade, M.J., Göktepe, F., Göktepe, Ö.,
Mirvakili, S.M., Naficy, S., Lepró, X., Oh, J., Kozlov, M.E., Kim,
S.J., Xu, X., Swedlove, B.J., Wallace G.G., Baughman, R.H., (2014),
Artificial Muscles from Fishing Line and Sewing Thread, Science, 343,
868- 872. http://dx.doi.org/10.1126/science.1246906 |
||||
References
1. Altınok, U. B., (2008), Tekstil Yüzeylerinin Antibakteriyel Özelliklerinin Araştırılması. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, 97s, Isparta. | ||||
2. Leikauf, U., (2008), Wetting solution for wet wipes for cosmetic, personal hygiene, dermatological and/or cleaning purposes, US Patent No: 0241204 A1. | ||||
3. Yoh, H., J., (1990), Wet Wipes, US Patent No: 4904524. | ||||
4. Kopacz,T., J., Zander,T., M., Everson, M., G., Cancian,A., C., Hammonds, Y., L., (1996), Wet wipes having improved dispensability, US Patent No: 5540332 A. | ||||
5. Erbişim, (2012), Karbonatli islak mendil, TR Patent No: 201203199. | ||||
6. Amundson,J., D., . Hendrickson,W., A., Drath,D., J., . Rueb, C., J., Finney, J., M., (2012), Microencapsulated delivery vehicle having an aqueous core. US Patent No: 8192841 B2. | ||||
7. Marsh, R., G.,Duderstadt, J., M., (2015), Cleansing composition and a wet wipe comprising the same, US Patent No: 8940675 B2. | ||||
8. Touchet, Y., L., Radovanovich, P., M., (1994), Antimicrobially effective aqueous solution and preserved wet wipes using same, EP Patent No:0 619 074 Al. | ||||
9. Hammer, I., Kupermintz, M., (2009), Use of polysaccharide polymers and cations for the preparation of wet wipes, Wipo Patent No:2009125405A2. | ||||
10. Baylan, E., (2006), Tıbbi Alanlarda Kullanılan Non-Woven (Dokusuz Yüzey) Tasarımları, Sütçü İmam Üniversitesi Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, 15-30. Kahramanmaraş. | ||||
11. Pomeroy, S., L., Amundson, J., D., Riegert, J., R., Sosalla, G., K., Bruss, D., C., Wydeven, J., M., (2008), Wet wipes having increased stack thickness, WO Patent No: 2008122900 A1. | ||||
12. Blieszner, K., C., Deckner, G., E., (1997), Personal care compositions and wipe products containing the compositions, US Patent No: 5, 648, 083. | ||||
13. John, E., R., John, P., D., Edward, T., M., (2002), Wet wipes, WP Patent No:2002007701A2. | ||||
14. Marchese, M., (2010), Parabens and Breast Cancer, Natural Medicine Journal. 2(10), 7-8. | ||||
15. Gattuso, D., J., (2011),The True Story of Cosmetics, Competitive Enterprise Institute. No:6. | ||||
16. Bornhoeft, J. W., Nelson, J., R., (1991), Wet wiper natural acid and salt preservative composition, US Patent No:5049440. | ||||
17. Pucci, M., (2000), Stacked wet wipes having anti evaporation layers, EP Patent No: 0978247 A1. | ||||
18. Saville, B. P., (2000), Physical Testing of Textiles, The Textile Institute Publications, 310, England. | ||||
19. Aksoy, A., Kaplan, S., (2011), Tekstilde Sıvı Transfer Mekanizmaları, Tekstil Teknolojileri Elektronik Dergisi,5(2),51-67. | ||||
20.
Rengasamy, R., S., Kothari, V., K., Bele, V., S., Khanna, S., (2011),
Liquid sorption behaviour of nonwovens, Indian Institute of
Technology,102(12), 1019–1030. http://dx.doi.org/10.1080/00405000.2010.529285 |
||||
21.
Das, D., Pradhan, A., K., Pourdeyhimi, B., (2012), Dependence of the
Liquid Absorption Behavior of Nonwovens on Their Material and Structural
Characteristics: Modeling and Experiments, Journal of Applied Polymer
Science, 126, 1053–1060. http://dx.doi.org/10.1002/app.36635 |
||||
22. Güney, S., Pulan, S., Kaplan, S., Kınaytürk, N., K., Aslan, S., Ulusoy, S., (2015), Wet Wipes Including Natural-Based- Clays and Liquids for Cosmotextile Applications, 2. Uluslar arası Sağlık ve Medikal Tekstilleri Kongresi, İzmir. | ||||
23. Ali S. M., Khan A. A., Ahmed I., Musaddiq M., et al. (2005), Antimicrobial Activities of Eugenol and Cinnamaldehyde Against The Human Gastric Pathogen Helicobacter Pylori, Ann Clin Microbiol Antimicrob, 4:20,1-7. | ||||
24.
Gill, A. O., Holley, R. A., (2004), Mechanisms of Bactericidal Action
of Cinnamaldehyde Against Listeria Monocytogenes and of Eugenol Against
L. Monocytogenes and Lactobacillus Sakei, Applied and Environmental
Mıcrobiology, Vol. 70, No. 10, 5750–5755. http://dx.doi.org/10.1128/AEM.70.10.5750-5755.2004 |
||||
25.
Behary,N., Kerkeni,A., Perwuelz,A., Chihib N., E., Dhulster, P.,
(2013), Bioactivation of PET woven fabrics using alginate biopolymer and
the bacteriocin nisin, Textile Research Journal, (10), 1-10. http://dx.doi.org/10.1177/0040517512471743 |
||||
26. EDANA Recommended Test Methods, 2002. | ||||
27.ASTM D 5734- 95, Standard test Method for Tearing Strength of Nonwoven Fabrics by Falling Pendulum (Elmendorf) Apparatus, 2001. | ||||
28. Boer, J.J., (1980). The Wettability of Scoured and Dried Cotton Fabrics. Textile Research Journal, 50, 624-631. http://dx.doi.org/10.1177/004051758005001008 |
||||
29. Normative Validation Implementation Team, 2004. Document No: FTTS-FA, 004. |
References
1.
Sechi, L.A., Lezcano, I., Nunez, N., Espim, M., Dupre, I., Pinna, A.,
Molicotti, P., Fadda, G., Zanetti, S., (2001), Antibacterial Activity of
Ozonized Sunflower Oil (Oleozon), Journal of Applied Microbiology, 90,
279-284 http://dx.doi.org/10.1046/j.1365-2672.2001.01235.x |
||||
2.
Skalska, K., Ledakowicz, S., Perkowski, J., Sencio, B., (2009),
Germicidal Properties of Ozonated Sunflower Oil, Ozone: Science &
Engineering, 31, 232-237 http://dx.doi.org/10.1080/01919510902838669 |
||||
3.
Lezcano, I., Nuflez, N., Espino, M., Gomez, M., (2000), Antibacterial
Activity of Ozonized Sunflower Oil, Oleozon, Against Staphylococcus
Aureus and Staphylococcus Epidermidis, Ozone Science & Engineering,
22, 207-214 http://dx.doi.org/10.1080/01919510008547221 |
||||
4.
Menendez, S., Falcon, L., Simon, D.R., Landa, N., (2002), Efficacy of
Ozonized Sunflower Oil in the Treatment of Tinea Pedis, Mycoses, 45,
329-332 http://dx.doi.org/10.1046/j.1439-0507.2002.00780.x |
||||
5.
Jardines, D., Correa, T., Ledea, O., Zamora, Z., Rosado, A., Molerio,
J., (2003), Gas Chromatography–Mass Spectrometry Profile of Urinary
Organic Acids of Wistar Rats Orally Treated with Ozonized Unsaturated
Triglycerides and Ozonized Sunflower Oil, Journal of Chromatography B,
783, 517–525 http://dx.doi.org/10.1016/S1570-0232(02)00707-9 |
||||
6.
Soriano, N.U., Vigo, M.P., Matsumura, M., (2003), Ozonation of
Sunflower Oil: Spectroscopic Monitoring of the Degree of Unsaturation,
JAOCS, 80(10), 997-1001 http://dx.doi.org/10.1007/s11746-003-0810-1 |
||||
7.
Diaz, M.F., Sazatornil, J.A.G., Ledea, O., Hernandez, F., Alaiz, M.,
Garces, R., (2005), Spectroscopic Characterization of Ozonated Sunflower
Oil, Ozone: Science & Engineering, 27, 247-253 http://dx.doi.org/10.1080/01919510590945822 |
||||
8.
Diaz M.F., Nunez, N., Quincose, D., Diaz, W., Hernandez F., (2005),
Study of Three Systems of Ozonized Coconut Oil, Ozone: Science &
Engineering, 23, 153-157 http://dx.doi.org/10.1080/01919510590925275 |
||||
9.
Valacchi, G., Fortino, V., Bocci, V., (2005), The Dual Action of Ozone
on the Skin, British Association of Dermatologists, British Journal of
Dermatology, 153, 1096-1100 http://dx.doi.org/10.1111/j.1365-2133.2005.06939.x |
||||
10.
Diaz, M.F., Harnandez, N., Martinez, G., Vidal, G., Gomez, M.,
Fernandez, H., Garces, R., (2006), Comparative Study of Ozonized Olive
Oil and Ozonized Sunflower Oil, J. Braz. Chem. Soc., 17(2), 403-407 http://dx.doi.org/10.1590/S0103-50532006000200026 |
||||
11.
Diaz M.F., Gavin J. A., Gomez M., Curtielles V., Hernandez F., (2006),
Study of Ozonated Sunflower Oil Using H NMR and Microbiological
Analysis, Ozone: Science & Engineering, 28, 59-63 http://dx.doi.org/10.1080/01919510500479239 |
||||
12.
Tellez, G.M., Lozano, O.L., Gomez, M.F.D., (2006), Measurement of
Peroxidic Species in Ozonized Sunflower Oil, Ozone: Science &
Engineering, 28, 181-185 http://dx.doi.org/10.1080/01919510600689356 |
||||
13.
Torres, I.F., Pinol, V.C., Urritia, E.S., Regueiferos, M.G., (2006), In
vitro Antimicrobial Activity of Ozonized Theobroma Oil Against Candida
albicans, Ozone: Science & Engineering, 28, 187-190 http://dx.doi.org/10.1080/01919510600689380 |
||||
14.
Sakazaki, F., Kataoka, H., Okuno, T., Ueno, H., Semma, M., Ichikawa,
A., Nakamuro, K., (2007), Ozonated Olive Oil Enhances the Growth of
Granulation Tissue in a Mouse Model of Pressure Ulcer, Ozone: Science
& Engineering, 29, 503-507 http://dx.doi.org/10.1080/01919510701618205 |
||||
15.
Sadowska, J., Johansson, B., Johannessen, E., Friman, R.,
Broniarz-Press, L., Rosenholm, J.B., (2008), Characterization of
Ozonated Vegetable Oils by Spectroscopic and Chromatographic Method,
Chemistry and Physics of Lipids, 151, 85–91 http://dx.doi.org/10.1016/j.chemphyslip.2007.10.004 |
||||
16.
Zamora, Z., Gonzalez, R., Guanche, D., Merino, N., Menendez, S.,
Hernandez, F., Alonso, Y., Schulz, S., (2008), Ozonized Sunflower Oil
Reduces Oxidative Damage Induced by Indomethacin in Rat Gastric Mucosa,
Inflammation Research, 57, 39-43 http://dx.doi.org/10.1007/s00011-007-7034-1 |
||||
17.
Zanardi, I., Travagli, V., Gabbrielli, A., Chiasserini, L., Bocci, V.,
(2008), Physico-Chemical Characterization of Sesame Oil Derivatives,
Lipids, 43: 877–886 http://dx.doi.org/10.1007/s11745-008-3218-x |
||||
18.
Bocci, V., Borrelli, E., Travagli, V., Zanardi, I., (2009), The Ozone
Paradox: Ozone Is a Strong Oxidant as Well as a Medical Drug. Medicinal
Research Reviews, 29(4), 646-682 http://dx.doi.org/10.1002/med.20150 |
||||
19.Omonov,
T.S., Kharraz, E., Curtis, J.M., (2011), Ozonolysis of Canola Oil: A
Study of Product Yields and Ozonolysis Kinetics in Different Solvent
Systems. J Am Oil Chem Soc., 88, 689–705 http://dx.doi.org/10.1007/s11746-010-1717-4 |
||||
20.
Valacchi G., Lim Y., Belmonte G., Miracco C., Zanardi I., Bocci V.,
Travagli V., (2011), Ozonated Sesame Oil Enhances Cutaneous Wound
Healing in SKH1 Mice, Wound Repair and Regeneration, 19(1), 107-115 http://dx.doi.org/10.1111/j.1524-475X.2010.00649.x |
||||
21. Almeida, N.R., Beatriz, A., Micheletti, A.C., Arruda, E.J., (2012), Ozonized Vegetable Oils and Therapeutic Properties: A Review, Orbital Electronic Journal of Chemistry, 4(4), 313- 326 | ||||
22.
Cirlini M., Caligiani A., Palla G., Ascentiis A.D., Tortini P., (2012),
Stability Studies of Ozonized Sunflower Oil and Enriched Cosmetics with
a Dedicated Peroxide Value Determination, Ozone: Science &
Engineering, 34, 293-299 http://dx.doi.org/10.1080/01919512.2012.692992 |
||||
23.
Campanati A., Blasio S.D., Giuliano A., Ganzetti G., Giuliodori K.,
Pecora T., Consales V., Minnetti I., Offidani A., (2013), Topical
Ozonated Oil Versus Hyaluronic Gel for the Treatment of Partial-to
Full-Thickness Second-Degree Burns: A Prospective, Comparative,
Single-Blind, Non- Randomised, Controlled Clinical Trial, J.burns,
http://dx.doi.org/10.1016/ j.burns.2013.03.002 http://dx.doi.org/10.1016/j.burns.2013.03.002 |
||||
24. Özler, M., Öter, Ş., Korkmaz, A., (2009), Ozon Gazının Tıbbi Amaçlı Kullanılması, TAF Preventive Medicine Bulletin, 8(1), 59-64 |
References
1. SPM Kompozit, Prepreg, http://www.spmkompozit.com/ prepreg-nedir/, (20.08.2015). | ||||
2. TenCate Advanced Composites, http://www.tencate.com/advancedcomposites/products/ thermoplastic/default.aspx, (11.11.2015). | ||||
3. Jonam Composites, http://www.jonam.co.uk/products/prepreg/prepreg.html, (15.11.2015). | ||||
4. Sakai Ovex Composites, http://www.sakaiovex.co.jp/english/carbon/prepreg.html, (17.11.2015). | ||||
5. Cyctec Engineered Materials, https://www.cytec.com/sites/default/files/datasheets/APC-2_PEEK_031912-01.pdf,(20.11.2015). | ||||
6. Chopped carbon fiber/thermoplastic prepreg, http://www.compositesworld.com/products/ chopped-carbonfiberthermoplastic-prepreg, (23.11.2015). | ||||
7. Unidirectional fibre-reinforced thermoplastic prepregs,http://www.jeccomposites.com/ news/composites-news/unidirectional-fibre-reinforced-thermoplastic-prepregs,(30.11.2015). | ||||
8. TPone – a thermoplastic prepreg. http://www.hacotech.com/cms/en/tpone_thermoplastic_ prepreg, (02.12.2015). | ||||
9.
Mei Z, Chung D D L., (2000), Kinetics of autohesion of thermoplastic
carbon-fiber prepregs, International Journal of Adhesion &
Adhesives; 20, 173-5. http://dx.doi.org/10.1016/S0143-7496(99)00023-8 |
||||
10. FibrtecThermoplastic Composite Material, http://www.fibrtec.com/solutions.html, (04.12.2015). | ||||
11. A New Material Captures the Market, https://www.sulzer.com/es/-/media/Documents/ Cross_Division/STR/1999/1999_02_4_kaerger_e.pdf, (07.12.2015). | ||||
12.
El-Dessouky H M, Lawrence C A., (2013), Ultra-lightweightcarbon
fibre/thermoplastic composite material using spread tow technology.
Composites: Part B; 50, 91-7. http://dx.doi.org/10.1016/j.compositesb.2013.01.026 |
||||
13.
Liu B, Xu A, Bao L., (2015), Preparation of carbon fiberreinforced
thermoplastics with high fiber volume fraction and high heat-resistant
properties. Journal of Thermoplastic Composite Materials; DOI:
10.1177/0892705715610408. http://dx.doi.org/10.1177/0892705715610408 |
||||
14. Hexcel Ürün Bilgisi, http://www.hexcel.com/NR/rdonlyres/5659C 134-6C31-463F-B86B-4B62DA0930EB/0/HexTow_AS4.pdf, (2009). | ||||
15. Evonik Degussa, Vestosint 2158 Ürün Bilgisi, http://www.degussa-hpp.com/dl/pi/vestosint_2158_nf_e6_bn.pdf,(2009). | ||||
16. Erden, S., (2009), Karbon Fiberlerden İmal Edilen KompozitYapılarda, Fiber Yüzey İşlemlerinin Fiber, Ara Bölge Ve Kompozit Yapı Özelliklerine Etkilerinin İncelenmesi, Doktora Tezi, Ege Üniversitesi Fen Bilimleri Enstitüsü, İzmir. | ||||
17. Wakeman M D, Zingraff L, Blanchard P, Manson J-A E., (2014), Stamp-Forming of Reactive-Thermoplastic Carbon Fiber/PA12 Composite Sheet. 7th International Conference on Flow Processes in Composite Materials, 7-9 July 2004 |
References
1. Alagirusamy, R., and Das, A. (2010). Technical Texile Yarns, Woodhead Publishing. http://dx.doi.org/10.1533/9781845699475 |
||||
2. Sunter, N. (2011). A research about production methods and properties of conductive yarns, Dokuz Eylul University, Institute of Science and Technology, MSc Thesis. | ||||
3. Cheng, K. B., Lee, M. L., Ramakrishna, S. and Ueng, T. H. (2001), Electromagnetic Shielding Effectiveness of Stainless Steel/Polyester Woven Fabrics, Textile Research Journal, 71(1), 42-39. | ||||
4.
Ueng, T. H., Cheng, K. B. (2001), Friction Core-Spun Yarns for
Electrical Properties of Woven Fabrics, Composites Part A: Applied
Science and Manufacturing, Vol. 32, 1491-1496. http://dx.doi.org/10.1016/S1359-835X(01)00048-3 |
||||
5.
Cheng, K. B., Cheng, T. W., Lee, K. C., Ueng, T. H., Hsing, W. H.
(2003), Effects of Yarn Constitutions and Fabric Specifications on
Electrical Properties of Hybrid Woven Fabrics, Composites Part A:
Applied Science and Manufacturing, 34, 971-978. http://dx.doi.org/10.1016/S1359-835X(03)00178-7 |
||||
6.
Su C.I. and Chern J.T. (2004), Effect of Stainless Steel Containing
Fabrics on Electromagnetic Shielding Effectiveness, Textile Research
Journal, (74), 51-54. http://dx.doi.org/10.1177/004051750407400109 |
||||
7.
Cheng K.B., Cheng T.W., Nadaraj R.N., Giri Dev V.R. and Neelakandan R.
(2006), Electromagnetic Shielding Effectiveness of the Twill Copper
Woven Fabrics, Journal of Reinforced Plastics and Composites, 25(7),
699-709. http://dx.doi.org/10.1177/0731684406060578 |
||||
8. Lou, C.W., Liu, H.H. (2007), Process and Anti-electrostatic Properties of Knitted Fabric Made from Hybrid Staple/metalliccore Spun Yarn, Journal of Advanced Materials, January, 39, 11-16. | ||||
9. Perumalraj R. and Dasaradan B.S. (2009), Electromagnetic Shielding Effectiveness of Copper Core Yarn Knitted Fabrics, Indian Journal of Fibre & Textile Research, 34, 149-154. | ||||
10.
Ramachandran, T. & Vigneswaran, C. (2009), Design and development
of copper core conductive fabrics for smart textiles, Journal of
Industrial Textiles, 39, 81–93. http://dx.doi.org/10.1177/1528083709103317 |
||||
11. Perumalraj R. and Dasaradan B. S. (2010), Electromagnetic Shielding Effectiveness of Doubled Copper Cotton Yarn Woven Materials, Fibres & Textiles in Eastern Europe, 18(3), 274-280. | ||||
12. Das A., Kothari V.K., Kothari A. and Kumar A. (2009), Effect of Various Parameters on Emse of Textile Fabrics, Indian Journal of Fibre &Textile Research, (34), 144-148. | ||||
13. Duran, D. and Kadoglu, H. (2012), A Research on Electromagnetic Shielding with Copper Core Yarns, Journal of Textile and Apparel, 22(4), 354-359. | ||||
14.
Ceken, F., Kayacan, O., Özkurt, A & Uğurlu, S.S. (2012), The
electromagnetic shielding properties of some conductive knitted fabrics
produced on single or double needle bed of a flat knitting machine, The
Journal of the Textile Institute, 103:9, 968-979. http://dx.doi.org/10.1080/00405000.2011.639514 |
||||
15.
Bedeloglu, A. (2013), Electrical, electromagnetic shielding and some
physical properties of hybrid yarn-based knitted fabrics, Journal of the
Textile Institute, 104, 11, 1247–1257. http://dx.doi.org/10.1080/00405000.2013.796627 |
||||
16.
Bedeloglu, A. (2013), Investigation of electrical, electromagnetic
shielding, and usage properties of woven fabrics made from different
hybrid yarns containing stainless steel wires, Journal of the Textile
Institute, 104, 12, 1359- 1373. http://dx.doi.org/10.1080/00405000.2013.806049 |
||||
17. Baykal, P., Signak, P. (2009), Metal İplik İçeren Dokuma Kumaşların Performans Özelliklerinin İncelenmesi, Tekstil ve Konfeksiyon (Turkish), 19(1), 39-44. | ||||
18.
Ortlek, H.G., Kilic, G., Yolacan, G., Tutak, M. (2010), Color and
whiteness properties of fabrics knitted from different hybrid core-spun
yarns containing metal wire, Fibers and Polymers, 11 (7), 1067–1074. http://dx.doi.org/10.1007/s12221-010-1067-8 |
||||
19. Ceven, E.K., Sule, G., Gurarda, A. ve Ersoz, A. (2011), Metal İplikli Dokuma Kumaşların Hava Geçirgenliği, Uludağ University Journal of the Faculty of Engineering and Architecture (Turkish), Cilt 16, Sayı 2. | ||||
20.
Bedeloglu, A.C., Sunter, N. and Bozkurt, Y. (2011), Manufacturing and
Properties of Yarns Containing Metal Wires, Materials and Manufacturing
Processes, 26, 1378-1382. http://dx.doi.org/10.1080/10426914.2011.577878 |
||||
21.
Bedeloglu, A.C., Sunter, N., Yildirim, B. and Bozkurt, Y. (2012),
Bending and Tensile Properties of Cotton/Metal Wire Complex Yarns
Produced for Electromagnetic Shielding and Conductivity Applications,
The Journal of the Textile Institute, 103:12, 1304-1311. http://dx.doi.org/10.1080/00405000.2012.677568 |
||||
22. Bedeloglu, A.C. and Sunter, N. (2013), Investigation of Polyacrylic/Metal Wire Composite Yarn Characteristics Manufactured on Fancy Yarn Machine, Materials and Manufacturing Processes, 28:6, 650-656. | ||||
23.
Perumalraj R., Dasaradhan B.S. and Nalankili, G (2010), Copper,
stainless steel, glass core yarn, and ply yarn woven fabric composite
materials properties, Journal of Reinforced Plastics and Composites,
29(20), 3074–3082. http://dx.doi.org/10.1177/0731684410365007 |
||||
24.
Plattürk G.G. ve Kılıç, M. (2014), Kumaş Dökümlülüğünün Görüntü Analizi
Temelli Yöntemlerle Ölçülmesi, Tekstil ve Mühendis, 21: 94, 31-45. http://dx.doi.org/10.7216/130075992014219404 |
||||
25. Saville, B.P. (1999), Physical Testing of Textiles, Woodhead Publishing Limited and CRC Press LLC, FL, USA. | ||||
26.
Jeong Y.J., (1998), A Study of Fabric-drape Behavior with Image
Analysis Part 1: Measurement, Characterization, and Instability, Journal
of the Textile Institute, 89, 1, 59–69. http://dx.doi.org/10.1080/00405009808658597 |
||||
27.
Jeong Y.J., Phillips D.G., (1998), A Study of Fabric-Drape Behavior
with Image Analysis Part 2: The Effects of Fabric Structure and
Mechanical Properties on Fabric Drape, Journal of the Textile Institute,
89, 1, 70-79. http://dx.doi.org/10.1080/00405009808658598 |
||||
28. Robson D., Long C.C., (2000), Drape Analysis Using Imaging Techniques, Clothing and Textiles Research Journal, 18, 1, 1–8. http://dx.doi.org/10.1177/0887302X0001800101 |
||||
29.
Uçar N., Kalaoğlu F., Bahtiyar D., Bilaç O.E., (2004), Investigating
the Drape Behavior of Seamed Knit Fabrics with Image Analysis, Textile
Research Journal, 74, 2, 166-171. http://dx.doi.org/10.1177/004051750407400213 |
||||
30.Vangheluwe
L., Kiekens P., (1993), Time Dependence of the Drape Coefficient of
Fabrics, Institute Journal Textile Science Technology, 5, 5-8. http://dx.doi.org/10.1108/eb003022 |
||||
31.Kenkare N., May-Plumlee T., (2005), Fabric Drape Measurement: A Modified Method Using Digital Image Processing, Journal of Textile and Apparel Technology and Management, 4, 3, 1–8. | ||||
32. Behera B.K., Pattanayak A.K., (2008), Measurement and Modeling of Drape Using Digital Image Processing, Indian Journal of Fiber and Textile Research, 33, 230-238. | ||||
33.
Behera B.K., Mishra R., (2006), Objective Measurement of Fabric
Appearance Using Digital Image Processing, The Journal of the Textile
Institute, 97, 2, 147-153. http://dx.doi.org/10.1533/joti.2005.0150 |
||||
34. Tsai K.H., Tsai M.C., Wang P.N., Shyr T.W., (2009), New Approach to Directly Acquiring the Drape Contours of Various Fabrics, Fibres & Textiles in Eastern Europe, 17, 3 (74), 54-59. | ||||
35. Shyr T.W., Wang P.N., Cheng K.B., (2007), A Comparison of the Key Parameters Affecting the Dynamic and Static Drape Coefficients of Natural-Fibre Woven Fabrics by a Newly Devised Dynamic Drape Automatic Measuring System, Institute of Textile Engineering, 15, 3, 81-86. | ||||
36.
Shyr T.W., Wang P.N., Lin J.Y., (2009) Subjective and Objective
Evaluation Methods to Determine the Peak-trough Threshold of the Drape
Fabric Node, Textile Research Journal, 79, 13, 1223–1234. http://dx.doi.org/10.1177/0040517508100725 |
||||
37.Al-Gaadi
B., Göktepe F., Halasz M., (2012), A New Method in Fabric Drape
Measurement and Analysis of the Drape Formation Process, Textile
Research Journal, 82, 5, 502– 512. http://dx.doi.org/10.1177/0040517511420760 |
||||
38. Palaniswamy, N.K., Mohammed, A.S. and Robert, P.W. (2007), Balanced two-ply cotton rotor yarn, Indian Journal of Fibre and Textile Research, 32, 169-172. | ||||
39. TS 244 EN ISO 2060, (1999), Textiles-Yarn from packages- Determination of linear density (mass per unit length) by the skein method. | ||||
40. TS 250 EN 1049-2, (1996), Textiles-Woven Fabrics- Construction-Methods of Analysis-Part 2 Determination of Number of Threads per Unit Length. | ||||
41. TS 251,(2008), Determination of Mass Per Unit Length and Mass Per Unit Area of Woven Fabrics. | ||||
42. TS 7128 EN ISO 5084, (1998), Textiles-Determination of thickness of textiles and textile products. | ||||
43.George, D. and Mallery, P. (2013), IBM SPSS Statistics 21 Step by Step: A Simple Guide and Reference, Pearson Education. | ||||
44. Ozguney A.T., Taskin C., Ozcelik G., Gurkan P., Ozerdem A. (2009). Handle Properties of the Woven Fabrics Made of Compact Yarns, Tekstil ve Konfeksiyon, 19, 2, 108-113. | ||||
45. Payvandy P. (2011). Evaluation of Fabric Drape Coefficient Using Image Processing and Fractal Dimension, The 7th Iran Conference on Machine Vision and Image Processing,16-17 November. | ||||
References
1. Ugbloue, S.C.O., (2009), Polyolefin Fibres- Industrial and Medical Applications, Woodhead Publishing in Textiles, ISBN 978-1-84569-207-0, 406p. | ||||
2. Fourne, F., (1998), Synthetic Fibers-Machines and Equipment, Manufacture, Properties- Handbook for Plant Engineering, Machine Design, and Operation, Hanser/ Gardner Publications, ISBN 3-446-16072-8, 930p. | ||||
3.
McIntyre, J. E., (2005), Synthetic fibres: Nylon, polyester, acrylic,
polyolefin, Woodhead Publishing Ltd and CRC Press LLC, ISBN
0-8493-2592-7, 300p. http://dx.doi.org/10.1533/9781845690427 |
||||
4. Özkan S., (2008), Effect of filament cross-section shape, number of filaments and filament linear density on the properties of POY and textured yarn, MSc Thesis, Cukurova University, 275p. | ||||
5.
Babaarslan, O. and Hacıoğulları S.O., (2013), Effect of fibre
cross-sectional shape on the properties of POY continuous filaments
yarns, Fibers and Polymers; 14(1):146-151. http://dx.doi.org/10.1007/s12221-013-0146-z |
||||
6.
Karaca, E. and Özçelik F., (2007), Influence of the crosssectional
shape on the structure and properties of polyester fibers, Journal of
Applied Polymer Science, 10: 2615-2621. http://dx.doi.org/10.1002/app.25350 |
||||
7.
Karacan İ. and Benli H., (2011), The Influence Of Annealing Treatment
On The Molecular Structure And The Mechanical Properties Of Isotactic
Polypropylene Fibers, Journal of Applied Polymer Science, 122:
3322-3338. http://dx.doi.org/10.1002/app.34440 |
||||
8.
Bueno M, Aneja AP and Renner, M., (2004), Influence of the shape of
fiber cross-section on fabric surface characteristics, Journal of
Materials Science, 39: 557-564. http://dx.doi.org/10.1023/B:JMSC.0000011511.66614.48 |
||||
9. Tascan M and Vaughn E, (2008), Effects of fiber denier, fiber cross-sectional shape and fabric density on acoustical behavior of vertically lapped nonwoven fabrics, Journal of Engineered Fibers and Fabrics, 3: 32-38. | ||||
10.
Varshney RK, Kothari VK and Dhamija S, (2011), Influence of polyester
fibre fineness and cross-sectional shape on lowstress characteristics of
fabrics, The Journal of the Textile Institute, 102(1): 31-40. http://dx.doi.org/10.1080/00405000903453661 |
||||
11. Karacan İ. and Benli H., (2011), "An X-Ray Diffraction Study for Isotactic Polypropylene Fibres Produced With Take-Up Speeds Of 2500-4250 M/Min", Tekstil ve Konfeksiyon, 21: 201-209. | ||||
12.Özkan Haciogullari, S., (2014), Design and Manufacture of Laboratory Type Filament Yarn Machine and Development of Original Product, PHd Thesis, Cukurova University, 298p. | ||||
13.Kebabci, M., (2014), Polypropylene Yarn Production with New Developed Laboratory Type Filament Yarn Production Method and Assessment of Yarn Specification, MSc Thesis, Cukurova University, 95p. | ||||
14. Vitrauskas, A., Migliniate, R., Vesa, P., Puolakka, A., (2005), Mechanical Properties of Polypropylene Multifilament Yarns in Dependence of Their Drawing Ratio, Materials Science, 11 (4): 407-410. | ||||
15. Demir, A. and Behery, H., (1997), Synthetic Filament Yarn- Texturing Technology, (pp. 25-32), Prentice- Hall Inc., New Jersey. |
References
1. Mezarcıöz, S., Toksöz, M. (2014), "Investigation of effect of special washing processes on denim fabrics' properties", Tekstil ve Konfeksiyon, 24(1), 86-91. | ||||
2. Sülar V., Kaplan, S. (2011), "Effects of different finishing processes on some performance characteristics of denim fabrics", Industria Textilă, 62(6), 283-288. | ||||
3.
Yang, R. H., Kan, C. W., Wong, W. Y. and Law, M. C. (2013),"Comparative
study of cellulase treatment on low stress mechanical properties of
cotton denim fabric made by torque-free ring spun yarn", Fibers and
Polymers, 14 (4), 669-675. http://dx.doi.org/10.1007/s12221-013-0669-3 |
||||
4. . Khedher, F., Dhouıb, S., Msahlı, S., Saklı, F. (2009), "The influence of industrial finishing treatments and their succession on the mechanical properties of denim garment", AUTEX Research Journal, 9(3), 93-100. | ||||
5.
Tarhan, M., Sarıışık M. (2009), "A comparison among performance
characteristics of various denim fading processes", Textile Research
Journal, 79(4), 301-309. http://dx.doi.org/10.1177/0040517508090889 |
||||
6. Rahman, M. M. (2011), "Effects of industrial enzyme wash on denim apparel characteristics", Pakistan Textile Journal, January, 46-48. | ||||
7. Mir, S., Hossain, M., Biswas, P., Hossain A., Idris, M.A. (2014), "Evaluation of Mechanical Properties of Denim Garments after Enzymatic Bio-Washing", World Applied Sciences Journal 31(9), 1661-1665. | ||||
8. Sarkar, J., Khalil, E. Solaiman, M. (2014a), "Effect of enzyme washing combined with pumice stone on the physical, mechanical and color properties of denim garments", International Journal of Research in Advent Technology, 2(9), 65-68. | ||||
9. Jucienė, M., Dobilaitė, V., Kazlauskaitė, G. (2006), "Influence of industrial washing on denim properties", Materials Science (Medžiagotyra) 12(4), 355-359. | ||||
10. Khalil, E., Sarkar, J., Rahman, M., Solaiman, M. (2014), "Influence of enzyme and silicone wash on the physicomechanical properties of non-denim twill garments", International Journal of Scientific & Technology Research, 3(10), 231-233. | ||||
11.Khan, M.M.R., Mondal, M.I.H. (2013), "Physico-mechanical properties of finished denim garment by stone-bleach treatment", Journal of Chemical Engineering, IEB 28(1), 36- 40. | ||||
12. Sarkar, j. Khalil, E. (2014b), "Effect of industrial bleach wash and softening on the physical, mechanical and color properties of denim garments", IOSR Journal of Polymer and Textile Engineering, 1(3), 46-49. | ||||