Archive
Year | 2015 (Volume:22) |
Issue | 97 |
Pages | 1-54 |
Cover Page | Cover Page |
Articles
1 | The Effects of Dopant and Solvent on Morphology, Conductivity and Mechanical Properties of Polyacrylonitrile / Polyaniline Composite Nanofibers DOI: 10.7216/130075992015229701 Authors : Nuray KIZILDAG, Nuray UCAR, N. DEMİRSOY, Esma SEZER, Belkıs USTAMEHMETOĞLU O. EREN, Ayşen ONEN, İsmail KARACAN, Seniha GUNER Article Detail | Abstract | Full Text | References |
2 | Exergetic Analysis of the Thermal Conversion Process in PAN-Based Carbon Fibre Production DOI:10.7216/130075992015229702 Authors : Andreas DE PALMENAER, Gunnar SEIDE, Thomas GRIES Article Detail | Abstract | Full Text | References |
3 | Mechanical and Thermal Properties of Wool Waste Fabric Reinforced Composites DOI: 10.7216/130075992015229703 Authors : Sevhan Müge YÜKSELOĞLU, Mehmet ÇALIŞKAN Article Detail | Abstract | Full Text | References |
4 | Projection of Sciences Onto Textile and Fashion: Nano-Technology and Chargeable Fabric Example DOI: 10.7216/130075992015229704 Authors : Özgür ÇOBANOĞLU, Jitka ERYILMAZ, Mehmet Fatih ATAŞALAN, Semih KAZANÇ Article Detail | Abstract | Full Text | References |
5 | Disposable Mask Design for Odor Pollution in the Work Environment DOI:10.7216/130075992015229705 Authors : Ayşe Merih SARIIŞIK, Gülşah Ekin KARTAL Article Detail | Abstract | Full Text | References |
6 | Determination of Antimicrobial Activity of the Dyed Silk Fabrics with Some Natural Dyes DOI:10.7216/130075992015229706 Authors : Rezan ALKAN, Emine TORGAN, Canan AYDIN, Recep KARADAG Article Detail | Abstract | Full Text | References |
7 | Novel Approach to Controlled Surface Modification in Textile Via Magnetic Cross-Linked Enzyme Aggregates (Clea) DOI:10.7216/130075992015229707 Authors : Alixander PERZON, Cedric DICKO, Özgür ÇOBANOĞLU, Onur YÜKSELEN, Estera DEY, Jitka ERYILMAZ Article Detail | Abstract | Full Text | References |
8 | Effect of Fragrance Finish on Mechanical and Comfort Properties of Digitally Printed Fabric DOI:10.7216/130075992015229708 Authors : Tabassum AAMIR, Muhammad ANWAAR, Ayesha HUSSAIN, Nighat BHATTI, Zafar JAVED Article Detail | Abstract | Full Text | References |
References
1.
Jousseaume V., Morsli M., and Bonnet A., (2000), Aging of electrical
conductivity in conducting polymer films based on polyaniline, Journal
of Applied Physics, 88(2), 960-966. http://dx.doi.org/10.1063/1.373762 |
||||
2.
Wei P., Sheng L.Y., Guang L., and Jian M.J., (2005), Electrical and
structural analysis of conductive polyaniline/ polyacrylonitrile
composites, European Polymer Journal, 41, 2127-2133. http://dx.doi.org/10.1016/j.eurpolymj.2005.04.003 |
||||
3.
Guangzhao Z., Qingqing F., Yue T., Yu Z., Ding P. and Zongyi Q.,
(2010), Conductive composite films composed of polyaniline thin layers
on microporous polyacrylonitrile surfaces, Thin Solid Films, 519,
169-173. http://dx.doi.org/10.1016/j.tsf.2010.07.088 |
||||
4.
Stejskal J. and Sapurina I., (2005), Polyaniline: Thin Films and
Colloidal Dispersions, Pure and Applied Chemistry, 77(5), 815-826. http://dx.doi.org/10.1351/pac200577050815 |
||||
5.
Jiang J., Pan W., Yang S. and Li G., (2005), Electrically conductive
PANI-DBSA/Co-PAN composite fibers prepared by wet spinning, Synthetic
Metals, 149, 181-186. http://dx.doi.org/10.1016/j.synthmet.2004.12.008 |
||||
6.
Li M.Y., Guo Y., Wei Y., MacDiarmid A.G. and Lelkes P.I., (2006),
Electrospinning polyaniline contained gelatin nanofibers for tissue
engineering applications, Biomaterials, 27, 2705-2715. http://dx.doi.org/10.1016/j.biomaterials.2005.11.037 |
||||
7.
Cardenas J.R., De Franc M.G.O, De Vasconcelos E.A., and et al., (2007),
Growth of sub-micron fibres of pure polyaniline using the
electrospinning technique. J Phys D: Appl Phys, 40: 1068-1071. http://dx.doi.org/10.1088/0022-3727/40/4/022 |
||||
8. Joo J., Song H.G., Chung Y.C., Baeck J.S., (1997), The effects of dopant and solvent on charge transport of doped polyanilines, Journal of the Korean Physical Society, 30(2), 230-236. | ||||
9.
Almuhamed N., Khenoussi L., Schacher D., Adolphe H.B., (2012),
Measuring of Electrical Properties of MWNTReinforced PAN Nanocomposites,
Journal of Nanomaterials, 1-7, 2012. http://dx.doi.org/10.1155/2012/750698 |
||||
10. Saini P., Choudhary V., (2013), Electrostatic charge dissipation and electromagnetic interference shielding response of polyaniline based conducting fabrics, Indian Journal of Pure Applied Physics, 51, 112-117. | ||||
11. Lee H.T., Yang S.J., (2010), Synthesis and characterization of polyaniline/silica doped with camphorsulfonic acid and dodecylbenzylsulfonic acid, Journal of Applied Polymer Science, 116(2), 934–945. | ||||
12. Li G., Zheng P., Wang N. L., Long Y. Z., and Chen Z. J., Li J. C. and Wan M. X., Optical study on doped polyaniline composite films, http://arxiv.org/pdf/cond-mat/0404629.pdf] | ||||
13.
Xuehong L., Hsiao Y.N., Jianwei X., Chaobin H., (2002), Electrical
conductivity of polyaniline-dodecylbenzene sulphonic acid complex:
thermal degradation and its mechanism, Synthtic Metals, 128, 167-178. http://dx.doi.org/10.1016/S0379-6779(01)00668-3 |
||||
14.
Long Y., Chen Z., Wang N., Zhang Z., Wan M., (2003), Resistivity study
of polyaniline doped with protonic acids, Physica B 325, 208-213. http://dx.doi.org/10.1016/S0921-4526(02)01526-0 |
References
1. Morgan P., (2005), Carbon fibers and their composites.Taylor & Francis, Boca Raton http://dx.doi.org/10.1201/9781420028744 |
||||
2. Riedl K., (2006), Exergetische und exergoökonomische Bewertung von Verfahren der Energie- und Stoffwandlung. Merseburg, Martin-Luther-Universität, Halle-Wittenberg, House publisher, Dissertation | ||||
3.
Damodaran S., Desai P., Abhiraman A. S., (1990), Chemical and Physical
Aspects of the Formation of Carbon Fibres from PAN-based Precursors.
"Journal of the Textile Institute", 81, No. 4, pp. 384-420 http://dx.doi.org/10.1080/00405009008658719 |
||||
4. Oguz G., (2004) Pyrolysis mass spectrometic analysis of copolymer of polyacrylonitrile and polyhiophene. Çankaya Ankara, Turkey, Middle East Technical University, House publisher, Masterthesis | ||||
5.
Surianarayanan M., Uchida T., Wakakura M., (1998) Evolved gases by
simultaneous TG–MS technique and associated thermal hazard in drying of
polyacrylonitrile. "Journal of Loss Prevention in the Process
Industries" 11,pp. 99–108 http://dx.doi.org/10.1016/S0950-4230(97)00032-6 |
References
1.
Bledzki, A., Zhang,W., Chate, A., (2001), Natural-fibrereinforced
polyurethane microfoams, Composites Science and Tehcnology, 61,
2405-2411 http://dx.doi.org/10.1016/S0266-3538(01)00129-4 |
||||
2.
Prasad, A., Rao, K., (2011), Mechanical properties of natural fibre
reinforced polyster composites: Jowar, sisal and bamboo, Materials and
Design, 32, 4658-4663 http://dx.doi.org/10.1016/j.matdes.2011.03.015 |
||||
3. Basu,S., Tensile deformation of fibers used in textile industry, http://cp.literature.agilent.com/litweb/pdf/5991-0274EN.pdf, Access date 22.06.2014 | ||||
4.
Barone, J., Schmidt, W, Liebner, C., (2005), Compounding and molding of
polyethylene composites reinforced with keratin feather fiber,
Composites Science and Technology, 65, 683-692 http://dx.doi.org/10.1016/j.compscitech.2004.09.030 |
||||
5.
Barone, J., Schmidt, W., (2005), Polyethylene reinforced with keratin
fibres obtained from chicken feathers, Composites Science and
Technology, 65, 173-181 http://dx.doi.org/10.1016/j.compscitech.2004.06.011 |
||||
6.
Aluigi, A., Vineis,C., Ceria, A., Tonin, C., (2008), Composite
biomaterials from fibre wastes:Characterization of woolcellulose acetate
blends, Composites: Part A, 39, 126-132 http://dx.doi.org/10.1016/j.compositesa.2007.08.022 |
||||
7. Yukseloglu, S., Yoney, H., (2009), Bamboo fibre reinforced composite structures and their mechanical properties, Tekstil ve Konfeksiyon, 4, 261-264 | ||||
8.
Conzatti, L., Giunco, F., Stagnaro, P., Patrucco, A., Marano, C., Rink,
M., Marsano, E., (2013), Composites based on polypropylene and short
wool fibres, Composites: Part A, 47, 165-171 http://dx.doi.org/10.1016/j.compositesa.2013.01.002 |
||||
9.
Conzatti, L., Giunco, F., Stagnaro, P., Patrucco, A., Tonin, C.,
Marano, C., Rink, M., Marsano, E., (2014), Wool fibres functionalised
with a silane-based coupling agent for reinforced polypropylene
composites, Composites: Part A,61, 51-59 http://dx.doi.org/10.1016/j.compositesa.2014.02.005 |
||||
10.
Etaati, A., Pather, S., Fang, Z., Wang, H., (2014), The study of
fibre/matrix bond strength in short hemp polypropylene composites from
dynamic mechanical analysis, Composites: Part B, 62, 19-28 http://dx.doi.org/10.1016/j.compositesb.2014.02.011 |
||||
11. TS 1398 EN ISO 527, (1997), Plastikler Çekme Özelliklerinin Tayini, Türk Standartlar Enstitüsü, Ankara, Türkiye | ||||
12. TS EN ISO 180, (2006), Plastikler İzod Darbe Mukavemetinin Tayini, Türk Standartlar Enstitüsü, Ankara, Türkiye |
References
1. Lukowics, P., Kirstein, T., Tröster, G., (2004), Wearable Systems for Health Care Applications, Schattauer Publishers, Methods Archive, vol.43, no.3, pp.232,238. | ||||
2. Bonderover, E., Wagner, S., (2004), A woven inverter circuit for e-textile applications, Electron Device Letters, IEEE, vol.25, no.5, pp.295,297. | ||||
3. Gualous, H., Louahlia-Gualous, H., Gallay, R., Miraoui, A., (2009), Supercapacitor Thermal Modeling and Characterization in Transient State for Industrial Applications, Industry Applications, IEEE Transactions on, vol.45, no.3, pp.1035,1044. | ||||
4.
Hu, L., Chen, W., et al., (2011), Symmetrical MnO2–Carbon
Nanotube–Textile Nanostructures for Wearable Pseudocapacitors with High
Mass Loading, ACS Nano, 5 (11), 8904-8913. http://dx.doi.org/10.1021/nn203085j |
||||
5. Pasta, M., La Mantia, F., Hu, L., Deshazer, H., Cui, Y., (2010), Aqueous supercapacitors on conductive cotton, Nano Research, vol.3, no.6, pp.452,458, 10.1007/s12274- 010-0006-8. | ||||
6.
Chen, S., Zhu, J., Wu, X., Han, Q., Wang. X., (2010), Graphene
Oxide−MnO2 Nanocomposites for Supercapacitors, ACS Nano, 4 (5),
2822-2830. http://dx.doi.org/10.1021/nn901311t |
||||
7. Coleman, J.N., et al., (2011), Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials, Science, vol.331, no.6017, pp.568,571. | ||||
8.
Lotya, M., King, P., Khan, U., et al., (2010), High- Concentration,
Surfactant-Stabilized Graphene Dispersions, ACS Nano, 4(6), 3155-3162. http://dx.doi.org/10.1021/nn1005304 |
||||
9. Malard, L.M., Pimenta, M.A., et al., (2009), Raman Spectroscopy in graphene, Physics Reports, vol.473, pp. 51,87. | ||||
10. Ferrari, A.C., Meyer, J.C., et al., Raman Spectrum of Graphene and Graphene Layers, Physical Review Letters, vol.97, 187401. http://dx.doi.org/10.1103/PhysRevLett.97.187401 |
||||
11. Part, S., An. J., et al., Aqueous Suspension and Characterization of Chemically Modified Graphene Sheets, ACS Chem. Mater., 20 (21), 6592-6594. | ||||
12. May, J.W., (1969), Platinum surface LEED rings, Surface Science, vol.17, 267-270. http://dx.doi.org/10.1016/0039-6028(69)90227-1 |
||||
13. Novoselov, K.S., Geim, A.K., et al., (2004), Electric Field Effect in Atomically Thin Carbon Films, Science, vol.306, no.5696, pp.666,669. | ||||
14.
Zhu, Y., Murali, S., et al., (2010), Graphene and Graphene Oxide:
Synthesis, Properties, and Applications, Advenced Materials,
10.1002/adma.201001068. http://dx.doi.org/10.1002/adma.201001068 |
||||
15.
Wu, M., Snook, G.A., et al., (2004), Redox deposition of manganese
oxide on graphite for supercapacitors, Electrochemistry Communications,
499-504. http://dx.doi.org/10.1016/j.elecom.2004.03.011 |
||||
16. Yu, G., Hu, L., et al., (2011), Solution-Processed Graphene/MnO2 Nanostructured Textiles for High- Performance Electrochemical Capacitors, ACS Publications, vol.11, pp.2905,2911. | ||||
17.
Chen, S., Zhu, J., Wu, X., Han, Q., Wang. X., (2010), Graphene
Oxide−MnO2 Nanocomposites for Supercapacitors, ACS Nano, 4 (5),
2822-2830 http://dx.doi.org/10.1021/nn901311t |
||||
18. Winter, M., and Brodd, R.J., (2004), What are Batteries, Fuel Cells, and Supercapacitors, Chemical Reviews, 104 (10), pp.4245,4270. | ||||
19. Hummers, Jr., William, S., (1957), Preparation of Grafitic Acit, Patent, US 2.798.878. |
References
1. Altay, P., Sarıışık, A.M. (2012). Tekstil Boyama İşlemlerinde Lipozomların Kullanımı, Tekstil ve Mühendis, 19: 86, 56. | ||||
2. http://www.izon.com/media/webinars/ | ||||
3.
Barani, H., Montazer, M. (2008). A Review on Applications of Liposomes
in Textile Processing, Journal of Liposome Research, 18:249. http://dx.doi.org/10.1080/08982100802354665 |
||||
4. Yurdakul, A., Atav, R., (2007). Lipozomların Yapısı ve Sınıflandırılması, Tekstil ve Konfeksiyon, 4243, 247. | ||||
5.
El-Zawahry, M.M., El Shami, S., El Mallah, M.H., (2007). Optimizing a
Wool Dyeing Process with Reactive Dye by Liposome Microencapsulation,
Dyes Pigm., 74, 684. http://dx.doi.org/10.1016/j.dyepig.2006.04.014 |
||||
6. De La Maza, A.,Coderch, L., Serra, S., Parra, J.L., (1997). Phosphatidylcholine Unilamellar Liposomes as Vehicles for a 1:2 Metal Complex Dye in Wool Dyeing, Journal of the Society of Dyers and Colourists, 165:169, 113. | ||||
7. Marti, M. L.,Coderch, A., De la Maza, A., Manich, A., Para, J.L., (1998). Phosphatidylcholine Liposomes as Vehicles for Disperse Dyes for Dyeing Polyester/Wool blends, Textile Research J., 68: 3, 209. | ||||
8. Marti, M., De La Maza, A., Parra, J.L., Coderch, L., (2001). Dyeing Wool at LowTemperatures: New Method Using Liposomes, Textile Res. J., 71: 8, 678. | ||||
9.
Montazer, M.,Validi, M., Toliyat, T., (2006). Influence of Temperature
on Stability of Multilamellar Liposomes in Wool Dyeing, Journal of
Liposome Research, 16: 81. http://dx.doi.org/10.1080/08982100500528883 |
||||
10.Nelson, G. (2002). Application of Microencapsulation in Textiles, Int. J. Pharm., 242: 55. http://dx.doi.org/10.1016/S0378-5173(02)00141-2 |
||||
11. Baptista, A.L.F., Coutinho, P.J.G., Real Oliveira, M.E.C.D., RochaGomes, J.I.N. (2003). Effect of Temperature and Surfactant on the Control Release of Microencapsulated Dye in Lecithin Liposomes. I, Journal of Liposome Research, 111:121, 13. | ||||
12. Maia, M. F. ve Moore, S. J. (2011). Plant-based insect repellents: A review of the irefficacy, development and testing, 4 Eylül 2012, http://www.malariajournal.com/content/10/S1/S11. | ||||
13.
Aydin, Y. M., Yaman, B., Koca, H., Dasdemir, O., Kara, M., Altiok, H.,
Dumanoglu, Y., Bayram, A., Tolunay, D., Odabasi, M., Elbir, T. (2014).
Biogenic volatile organic compound (BVOC) emissions from forested areas
in Turkey: Determination of specific emission rates for thirty-one tree
species, Science of the Total Environment, 490, 239–253 http://dx.doi.org/10.1016/j.scitotenv.2014.04.132 |
References
1. http://www.oeko-tex.com/xdesk/ximages/470/16459_100def, (2011), pdf; last accessed, 22 October. | ||||
2.
Surowiec, I., Orska-Gawry, J., Biesaga, M., Trojanowicz, M., Hutta, M.,
Halko, R. and Urbaniak-Walczak, K., (2003), Identification of natural
dyestuff in archeological coptic textiles by HPLC with fluorescence
detection, Anal. Lett.,Vol. 36, 1211-1229. http://dx.doi.org/10.1081/AL-120020154 |
||||
3.
Clementi, C., Miliani, C., Romani, A. and Favaro, G., (2006), In situ
fluorimetry: A powerful non-invasive diagnostic technique for natural
dyes used in artefacts: Part I. Spectral characterization of orcein in
solution, on silk and wool laboratory-standards and a fragment of
Renaissance tapestry, Spectrochim. Acta, Part A, Vol.64, 906-912. http://dx.doi.org/10.1016/j.saa.2005.08.024 |
||||
4.
Degano, I., Ribechini, E., Modugno, F. and Colombini, M.P., (2009),
Analytical methods for the characterization of organic dyes in artworks
and in historical textiles, Appl. Spectrosc. Rev., Vol. 44, 363-410. http://dx.doi.org/10.1080/05704920902937876 |
||||
5. Erkan, G., Sengul, K. and Kaya, S., J., (2011), Dyeing of White and Indigo Dyed Cotton Fabrics with Mimosa Tenuiflora Extract, Saudi. Chem. Soc., doi: 10.1016/ j.jscs. 2011. 06.001. | ||||
6.
Bechtold, T., Turcanu, A., Ganglberger, E. and Geissler, S., (2003),
Natural dyes in modern textile dyehouses - how to combine experiences of
two centuries to meet the demands of the future, J. Clean. Prod.,
Vol.11, 499-509. http://dx.doi.org/10.1016/S0959-6526(02)00077-X |
||||
7.
Bechtold, T., Mahmud-Ali, A. and Mussak, R., (2007), Natural dyes for
textile dyeing: A comparison of methods to assess the quality of
Canadian golden rod plant material, Dyes and Pigments., Vol.75, 287-293. http://dx.doi.org/10.1016/j.dyepig.2006.06.004 |
||||
8.
Bechtold, T., Mahmud-Ali, A. and Mussak, R.A.M., (2007), Reuse of
ash-tree (Fraxinus excelsior L.) bark as natural dyes for textile
dyeing: process conditions and process stability, Coloration Technology,
Vol.123, 271-279. http://dx.doi.org/10.1111/j.1478-4408.2007.00095.x |
||||
9.
Vankar, P.S., Shanker, R. and Verma, A., (2007), Enzymatic natural
dyeing of cotton and silk fabrics without metal mordants, J. Clean.
Prod., Vol.15, 1441-1450. http://dx.doi.org/10.1016/j.jclepro.2006.05.004 |
||||
10.
Vankar, P.S., Shanker, R., Mahanta, D. and Tiwari, S.C., (2008),
Ecofriendly sonicator dyeing of cotton with Rubia cordifolia Linn. using
biomordant, Dyes and Pigments, Vol.76, 207-212. http://dx.doi.org/10.1016/j.dyepig.2006.08.023 |
||||
11. Das, D., Maulik, S.R. and Bhattacharya, S.C., (2008), Dyeing of wool and silk with Rheum emodi, Indian J. Fiber Text. Res., Vol.33, 163-170. | ||||
12.
Zarkogianni, M., Mikropoulou, E., Varella, E. and Tsatsaroni, E.,
(2011), Colour and fastness of natural dyes: revival of traditional
dyeing techniques, Color. Technol., Vol.127, 18-27. http://dx.doi.org/10.1111/j.1478-4408.2010.00273.x |
||||
13.
Surowiec, I., Nowik, W. and Trojanowicz, M., (2008), Postcolumn
deprotonation and complexation in HPLC as a tool for identification and
structure elucidation of compounds from natural dyes of historical
importance, Microchim. Acta, Vol.162, 393-404. http://dx.doi.org/10.1007/s00604-007-0827-7 |
||||
14.Deveoglu,
O., Torgan, E. and Karadag, R., (2012), The characterisation by liquid
chromatography of lake pigments prepared from European buckthorn
(Rhamnus cathartica L.), J. Liq. Chrom. Relat. Technol., Vol.35,
331-338. http://dx.doi.org/10.1080/10826076.2011.601487 |
||||
15. Shaid, M., Shahid-ul-Islam, Mohammed, F., (2014), "Recent advancementsin natural dye applications: a review", J. Clean. Prod., Vol.53, 1-7. | ||||
16. Zhang, B., Wang, L., Luo, L. and King, M.W., (2013), "Natural dye extracted from Chinese gall-the application of color and antibacterial activity to wool fabric", J. Clean.Prod., Vol.80, 310-331. | ||||
17.
Baliarsingh, S., Panda, A.K., Jena, J., Das, T. and Das, N.B., (2012),
"Exploring Sustainable Technique on Natural Dye Extraction from Native
Plants for Textile: Identification of Colourants, Colourimetric Analysis
of Dyed yarns and their Antimicrobial Evaluation, J. Clean. Prod.,
Vol.37, 257-264. http://dx.doi.org/10.1016/j.jclepro.2012.07.022 |
||||
19.
Karadag, R., Torgan, E. & Yurdun, T., (2010), "Formation and HPLC
analysis of the natural lake pigment obtained from madder (Rubia
tinctorum L.)", Rewiews in Analytical Chemistry, Vol. 29, No. 1, 1-12. http://dx.doi.org/10.1515/REVAC.2010.29.1.1 |
||||
20.
Halpine, S.M., (1996), "An improved dye and lake pigment analysis
method for high performance liquid chromatography and diode-array
detector", Studies in Conservation, Vol.41, No. 9, 731-735. http://dx.doi.org/10.2307/1506519 |
||||
21. Karadag, R. and Dolen, E., (1997), "Examination of historical textiles with dyestuffs analyses by TLC and derivative spectrophometry", Turk J. Chem, Vol.21, No.2, 126-133. | ||||
22.Deveoglu,
O., Erkan, G., Torgan, E. and Karadag, R., (2012), "The evaluation of
procedures for dyeing silk with buckthorn and walloon oak on the basis
of colour changes and fastness characteristics, Coloration Technologies,
Vol. 129, 223-231. http://dx.doi.org/10.1111/cote.12023 |
||||
23.
Deveoglu, O., Sahinbaskan, B.Y., Torgan, E. and Karadag, R., (2012),
"Investigation on colour, fastness properties and HPLC-DAD analysis of
silk fibres dyed with Rubia tinctorium L. and Quercusithaburensis
Decaisne", Coloration Technologies, 128, 364-370. http://dx.doi.org/10.1111/j.1478-4408.2012.00389.x |
References
1. Mojsov, K. (2011), Application of enzymes in the textile industry: a review. in II International Congress "Engineering, Ecology and Materials in the Processing Industry". Jahorina, Bosnia and Hercegovina: UGD Academic Repository. | ||||
2. Cavaco-Paulo, A., Gubitz G., eds. (2003), Textile processing with enzymes. Woodhead Publishing Ltd: Cambridge England. http://dx.doi.org/10.1201/9780203500941 |
||||
3. Schmitt B., Prasad A.K., (1998), Update of indigo denim washing. Colourage, 45(10): p. 20-24. | ||||
4. Bhat M.K., (2000),Cellulases and related enzymes in biotechnology. Biotechnology Advances, 18(5): p. 355-383. http://dx.doi.org/10.1016/S0734-9750(00)00041-0 |
||||
5. Cavaco-Paulo A., (1998), Mechanism of cellulse action in textile processes. Carbohydrate Polymers, 37: p. 273-277. http://dx.doi.org/10.1016/S0144-8617(98)00070-8 |
||||
6.
Lenting H.B.M., Warmoeskerken M.M.C.G., (2001), Guidelines to come to
minimized tensile strength loss upon cellulase application. Journal of
Biotechnology, 89(2): p. 227-232. http://dx.doi.org/10.1016/S0168-1656(01)00301-7 |
||||
7. Klahorst S., Kumar A., Mullins M.M., (1994), Optimizing the use of cellulase enzymes. Textile Chemist and Colorist, 26(2): p. 13-18. | ||||
8.
Cavaco-Paulo A., Morgado J., Almeida L., and Kilburn D., (2000), Indigo
backstaining during cellulase washing. Textile Research Journal, 68(6):
p. 398-401. http://dx.doi.org/10.1177/004051759806800602 |
||||
9. Gusakov A.V., Sinitsyn P., Markov A. V., Skomarovsky A. A., Sinitsyna O. A., Berlin A. G., and Ankudimova N. V., (2000), Indigo-binding domains in cellulase molecules. Biocatalysis- 2000: Fundamentals and Applications, (095): p. 77-80. | ||||
10.
Pazarlioğlu N.K., Sariişik M., Telefoncu A., (2005), Treating denim
fabrics with immobilized commercial cellulases. Process Biochemistry,
40(2): p. 767-771. http://dx.doi.org/10.1016/j.procbio.2004.02.003 |
||||
11. Popdrepsek G.H., Primožiþ M., Knez Ž., Habulin M., (2012), Immobilization of cellulase for industrial production, in Chemical Engineering Transactions. p. 235-240. | ||||
12.
Yu Y., Yuan J., Wang Q., Fan X., Wang P., Cui L., (2001), A promising
approach for bio-finishing of cotton using immobilized acid-cellulase.
Fibers and Polymers, 15(5): p.932-937. http://dx.doi.org/10.1007/s12221-014-0932-2 |
||||
13. Cao L., (2005),Immobilised enzymes: science or art? Current opinion in chemical biology, 9(2): p. 217-26. http://dx.doi.org/10.1016/j.cbpa.2005.02.014 |
||||
14.
Hanefeld U., Gardossi L., and Magner E., (2009), Understanding enzyme
immobilisation. Chemical Society Reviews, 38(2): p. 453-68. http://dx.doi.org/10.1039/B711564B |
||||
15.
Dalal S., Sharma A., Gupta M.N., (2007), A multipurpose immobilized
biocatalyst with pectinase, xylanase and cellulase activities. Chemistry
Central Journal, 1(1): p. 16-16. http://dx.doi.org/10.1186/1752-153X-1-16 |
||||
16.
Broun G.H., (1976), Chemically aggregated enzymes, in Method in
Enzymology, K. Mosbach, Editor. Academic Press: New York. p. 263-580. http://dx.doi.org/10.1016/S0076-6879(76)44022-3 |
||||
17.
Reza R.T., Pérez C.A.M., González C. A. R., Romero H. M., Casillas P.
E. G.., (2010), Effect of the polymeric coating over Fe3O4 particles
used for magnetic separation. Central European Journal of Chemistry,
8(5): p. 1041-1046. http://dx.doi.org/10.2478/s11532-010-0073-4 |
||||
18.
Talekar S., Ghodake V., Ghotage T., Rathod P., Deshmukh P., Nadar S.,
Mulla M., Ladole M., (2012), Novel magnetic cross-linked enzyme
aggregates (magnetic CLEAs) of alpha amylase. Bioresource Technology,
123: p. 542-547. http://dx.doi.org/10.1016/j.biortech.2012.07.044 |
||||
19.
Sandip B., Bule M.V., Singhal R.S., Ananthanarayan L., (2009), Glucose
oxidase — An overview. Biotechnology Advances, 27: p. 489-501. http://dx.doi.org/10.1016/j.biotechadv.2009.04.003 |
||||
20.
Gusakov A., Sinitsyn A.P., Berlin A.G., Markov A.V., Ankudimova N.V.,
(2000), Surface hydrophobic amino acid residues in cellulase molecules
as a structural factor responsible for their high denim-washing
performance.Enzyme and microbial technology, 27(9): p. 664-671. http://dx.doi.org/10.1016/S0141-0229(00)00264-7 |
||||
21. Gusakov A.V., Sinitsyn A.P., (2000), Indigo-binding domains in cellulase molecules. Biocatalysis-2000: Fundamentals and Applications, 41(6): p. 77-80. | ||||
22.
Markov A.V., Gusakov V., Kondratyeva E. G., Okunev O. N., Bekkarevich
A. O., Sinitsyn A. P., (2005), New effective method for analysis of the
component composition of enzyme complexes from Trichoderma reesei.
Biochemistry. Biokhimi͡ia, 70(6): p. 657-63. http://dx.doi.org/10.1007/s10541-005-0166-4 |
||||
23.
Sinitsyn A.P., Gusakov, A.V., Grishutin, S.G., Sinitsyna, O.A.,
Ankudimova, N.V, (2001),Application of microassays for investigation of
cellulase abrasive activity and backstaining. Journal of Biotechnology,
89(2-3): p. 233-8. http://dx.doi.org/10.1016/S0168-1656(01)00306-6 |
References
1. Anwaar, M. & Aamir, T., (2013), Assessment of Customer Experience and Fragrance Finished Fabric with Corresponding and Non-Corresponding Prints, Proceeding of 2nd International Textiles and Costume Congress, pp. 230- 239, October 2013, Kasetsart University, Bangkok | ||||
2. Vijayalakshmi, D. & Ramachandran, T., (2012), Isolates Application of Multi-Functional Finishes on Denim Garments, Daffodil International University Journal of Science and Technology, Vol. 7, Issue. 1. | ||||
3. Karolia, A. & Mendapara, S., (2007), Imparting Antimicrobial and Fragrance Finsh on cotton using chitosan with silicon softener, Indian Journal of Fibre & Textile Research, pp. 99-104, Vol. 32. | ||||
4. Shiqi, L. Lewis, E. Stewart, M. Qian, L. & Boyter, H., (2008), Effect of finishing methods on washing durability of microencapsulated aroma finishing, Journal of the Textile Institute, pp. 173-183, Vol. 99. | ||||
5. Hegemann, D. Hossain, M. & Balazs D.J., (2007), Nanostructured plasma coatings to obtain multifunctional textile surfaces, Progress in Organic Coatings, pp. 237-240, Vol. 58 |