| Kaynaklar | : |
| 1. http://ec.europa.eu/clima/policies/roadmap/index_en.htm,16.12.2014 |
| |
| 2. http://www.bmub.bund.de/themen/klima-energie/, 16.12.2014 |
| |
| 3. http://ec.europa.eu/clima/policies/transport/vehicles/cars/index_en.htm, 16.12.2014 |
| |
| 4. R&G Faserverbundwerkstoffe GmbH (2009), Handbuch Faserverbundwerkstoffe |
| |
| 5.
Mountasir, A. (2009), Erweiterung und geometrische Modellierung der
spacer fabric Strukturen in Kombination von Faltenweb- und
Jacquardeinrichtung im Hinblick auf die Funktionsintegration, Technische
Universität Dresden, ITM, Master-Arbeit Nr:1357, 2009 |
| |
6.
Flemming, M.; Ziegmann, G.; Roth, S. (1996) Faserverbundbauweisen,
Halbzeuge und Bauweisen, Springer-Verlag Berlin Heidelberg, ISBN:
3540606165 http://dx.doi.org/10.1007/978-3-642-61432-3 |
| |
| 7.
Schemme, M., Werkstoffliche Grundlagen langfaserverstärkter
Thermoplaste Werkstoffliche Grundlagen, EATC Automative Seminar,
Wolsburg/Germany, 01.07.2003 |
| |
| 8.
Choi, B.D. (2005): Entwicklung von Commingling-Hybridgarnen für
faserverstärkte thermoplastische Verbundwerkstoffe. Technische
Universität Dresden, Dissertation |
| |
9.
Lehmann, B.; Herzberg, C. (2011): Garnkonstruktionen und
Garnbildungstechniken. In: Cherif, Ch. (Hrsg.): Textile Werkstoffe für
den Leichtbau. Berlin/Heidelberg: Springer- Verlag, ISBN
978-3-642-17991-4, S. 111-170 http://dx.doi.org/10.1007/978-3-642-17992-1_4 |
| |
| 10.
Wulfhorst, B.; Tetzlaff, G.; Kaldenhoff, R., (1992), Herstellung von
Hybridgarnen für den Einsatz in Faserverbundwerkstoffen
Chemiefasern/Textilindustrie 42/94, H. März, S. T10-T11 |
| |
| 11.
Gong, R., H., (2011), Specialist yarn and fabric structures,
developments and applications, Woodhead Publishing Limited, Part 2
s.21-55 |
| |
12.
Sawhney, A., P., S., Ruppenicker, G., F., Kimmel, L., B., Robert, K.,
Q., (1992), Comparison of filament-core spun yarns produced by new and
conventional methods, Textile Research Journal, 62(2), 67–73 http://dx.doi.org/10.1177/004051759206200202 |
| |
13. Wu, W., Y., Lee. J., Y., (1995), Twist in the Spinning of a Composite Yarn, Textile Research Journal, 65:522-526. http://dx.doi.org/10.1177/004051759506500906 |
| |
14.
Huh, Y., Kim, Y., R., Oxenham W., (2002), Analyzing Structural and
Physical Properties of Ring, Rotor, and Friction Spun Yarns, Textile
Research Journal; 72; 156, DOI:10.1177/004051750207200212 http://dx.doi.org/10.1177/004051750207200212 |
| |
15.
Basu, A., (2000), Influence of Yarn Structural Parameters on Rotor-spun
Yarn Properties, The Journal of The Textile Institute, 91:1, 179-182,
DOI: 10.1080/00405000008659498 http://dx.doi.org/10.1080/00405000008659498 |
| |
| 16.
Pouresfandiari F., Fushimi, S., Sakaguchi A., Saito, H. Toriumi, K.,
Nishimatsu, T., Shimizu, Y., Shirai, H., Matsumoto, Y., I., Gong, H.,
(2002), Spinning conditions and characteristics of open-end rotor spun
hybrid yarns, Textile Research Journal, 72(1), 61–70 |
| |
17.
Cheng, K., B., Murray, R., (2000), Effects of Spinning Conditions on
Structure and Properties of Open-End Cover- Spun Yarns, Textile Research
Journal, 690-5 http://dx.doi.org/10.1177/004051750007000806 |
| |
| 18. Klein W., (2009), The rieter Manuel of spinning Volume VI, The Textile Institute, Manchester, Woodhead Publishing, UK. |
| |
19.
Cheng, K., B., Cheng, T., W., Lee, K., C., Ueng, T., H., Hsing, W., H.,
(2003), Effects of yarn constitutions and fabric specifications on
electrical properties of hybrid woven fabrics, Composites: Part A 34
971–978 http://dx.doi.org/10.1016/S1359-835X(03)00178-7 |
| |
| 20. Fischer TECH GARNE GmbH, http://www.fischertechgarne.at/, 31.12.2014 |
| |
| 21.
Kaldenhoff, R., (1995), Friktionsspinn-Hybridgarne als neuartige
textile Halbzeuge zur Herstellung von Faserverbundkunststoffen,
Dissertation, ITA Aachen |
| |
22.
Abbott, G., M., Freischmidt, G., (1985), Wrapped-yarn reinforced
composites. II. Composite properties, Composites Science and Technology,
24(2), 147–158. http://dx.doi.org/10.1016/0266-3538(85)90056-9 |
| |
23.
Sawhney, A., P., S., Ruppenicker, G., F., Kimmel L., B., Robert, K.,
Q., (1992), Comparison of filament-core spun yarns produced by new and
conventional methods, Textile Research Journal, 62(2), 67–73. http://dx.doi.org/10.1177/004051759206200202 |
| |
24.
Lauke, B., Bunzel U., Schneider, K., (1998), Effect of hybrid yarn
structure on delamination behavior of thermoplastic composites,
Composites Part A: Applied Sciences and Manufacturing, 29, 1397–1409. http://dx.doi.org/10.1016/S1359-835X(98)00059-1 |
| |
| 25. Wulfhorst, B., (2003), Tekstil Üretim Yöntemleri, Çev.: Demir, A., Torun, A., R., Carl Hanser Verlag, München |
| |
| 26.
Patent TR200301753A2 (2005), Ön hazırlıksız bobinlerden bobine direkt
büküm yapabilen ve büküm sıklığı iğ hızından bağımsız ayarlanabilen
büküm makinesi ve metodu, Agteks örme ve tekstil endüstrileri san. ve.
Tic. Ltd. şirketi |
| |
| 27. Paul, C., (2012), Funktionalisierung von duroplastischen Faserverbundwerkstoffen durch Hybridgarne, Vieweg+Teubner Verlag |
| |
| 28.
Patent US 4856147, (1989) Composites of stretch broken aligned fiber
carbon and glass reinforced resin, Armiger T. E. , Edison D. H. ,
Lauterbach H. G. , Layton J. R. , Okine R. K., |
| |
| 29. Patent, WO8901999 (A1), (1989) Hybrid Yarn, Heltra INC. |
| |
| 30.
Braches, E., (1991), The use of hybrid yarns in the manufacture of
fibre reinforced thermoplastic composite materials, Proceedings of
Techtextil Symposium, Frankfurt, Germany |
| |
31.
Gibson, A., G., Manson, J., A., (1992) Impregnation technology for
termoplastic matrix composites, Composites Manufacturing, 3:223-233. http://dx.doi.org/10.1016/0956-7143(92)90110-G |
| |
| 32.
Patent US 5425796 A (1995), Method of and an apparatus for forming a
composite thread including stretching of thermoplastic filaments,
Vetrotex France S.A. |
| |
| 33. Patent DE19915955A1 (2000), Vorrichtung zum Herstellen eines strangartigen Faserverbundes aus Glasfasern, Schuller Gmbh |
| |
| 34. http://www.ocvreinforcements.com/solutions/Thermopreg.aspx, 31.12.2014 |
| |
35.
Mäder, E., Rothe, C., Gao, S., L., (2007), Commingled yarns of surface
nanostructured glass and polypropylene filaments for effective composite
properties. In: Journal of Materials Science 42 pp. 8062-8070 http://dx.doi.org/10.1007/s10853-006-1481-x |
| |
36.
Mäder, E., Rothe, C., Brunig, H., Leopold, T., (2007), Online spinning
of commingled yarns - equipment and yarn modification by tailored fibre
surfaces. In: Key Engineering Materials, 334-335, S. 229–232. DOI
10.4028 http://dx.doi.org/10.4028/www.scientific.net/kem.334-335.229 |
| |
| 37.
Mäder, E., Rothe, C., (2006), Tailoring of commingled yarns for
effective composite properties. In: Chemical Fibers International 56
(2006) pp. 298-300 |
| |
| 38.
Abounaim, M., D., Hoffmann, G., Diestel, O., Cherif, C., (2009),
Development of flat knitted spacer fabrics for composites using hybrid
yarns and investigation of twodimensional mechanical properties. In:
Textile Research Journal 79, Nr. 7, S. 596–610. DOI
10.1177/0040517508101462s |
| |
39.
Mäder, E., Rausch, J., Schmidt, N., (2008), Commingled yarns–
Processing aspects and tailored surfaces of polypropylene/glass
composites, Composites: Part A 39 612–623 http://dx.doi.org/10.1016/j.compositesa.2007.07.011 |
| |
| 40. Demir, A., (2006), Sentetik Filament İplik Üretim ve Tekstüre Teknolojileri, Şan Ofset, İstanbul. |
| |
41.
Alagirusamy R., and Ogale V., (2004), Commingled and Air Jet-textured
Hybrid Yarns for Thermoplastic composites, Journal of Industrial
Textiles 33: 223, DOI: 10.1177/1528083704044360 http://dx.doi.org/10.1177/1528083704044360 |
| |
| 42.
Bunzel, U., Lauke, B., Schneider, K., (1999), Air Textured Hybrid Yarn
Structures and Their Influence on the Properties of Long Fiber
Reinforced Thermoplastic Composites, TechnischeTextilien, 42(1): 10–12 +
E2 |
| |
43.
Wakeman, M., D., Cain, T., A., Rudd, C., D., Brooks, R., Long, A., C.,
(1998), Compression Moulding of Glass and Polypropylene Composites for
Optimised Macro- and Micro- Mechanical Properties – 1 Commingled Glass
and Polypropylene, Composite Science Technology, 58(12): 1879–1898 http://dx.doi.org/10.1016/S0266-3538(98)00011-6 |
| |
44.
Alagirusamy, R., Ogale, V. (2004). Commingled and Air Jettextured
Hybrid Yarns for Thermoplastic Composites. Journal of Industrial
Textiles, 33(4), 223–243. doi:10.1177/1528083704044360 http://dx.doi.org/10.1177/1528083704044360 |
| |
45.
Alagirusamy, R., Ogale, V. (2008), Properties of GF/PP Commingled Yarn
Composites, Journal of Thermoplastic Composite Materials 21, Nr. 6, S.
511–523. DOI 10.1177/0892705708091281 http://dx.doi.org/10.1177/0892705708091281 |
| |
| 46.
Mankodi, H., Patel, P., (2010), Study the effect of commingling
parameters on glass/ poly-propylene hybrid yarn properties, Autex
Research Journal, Vol 9, No 3 |
| |
| 47. COMFIL: Yarns/Rovings. http://www.comfil.biz/products/ yarnsroving.php, 31.12.2014 |
| |
| 48.
Patent DE202008013041, (2008), Linienförmiges Kunststoffprofil mit
strukturierter Oberfläche, Sächsisches Textilforschungsinstitut e.V. |
| |
| 49. http://www.kvb-chemnitz.de/, 31.12.2014 |
| |
| 50. Schappe Techniques, http://www.schappe.com/, 31.12.2104 |
| |
| 51.
Patent FR2958663 (A1), (2011), Method for obtaining preconsolidated
hybrid thread i.e. carbon fibers, involves forming pre-consolidated
hybrid wire by reducing mass volume of hybrid wire by subjecting portion
of wire to predetermined pressur, Schappe SA |
| |
| 52. Golzar, M., (2004), Melt Spinning of Fine PEEK Filaments, PhD Thesis, TU Dresden, Germany. |
| |
53.
Acar,M., Turton, R., K.,Wray G., R., (1986), Analysis of the air-jet
yarn-texturing process, IV–Fluid forces acting on the filaments and the
effects of filament cross-sectional area and shape, Journal of Textile
Institute, 77(4), 247–254. http://dx.doi.org/10.1080/00405008608658417 |
| |
54.
M. Golzar, H. Brünig and E. Mäder, (2007), Commingled Hybrid Yarn
Diameter Ratio in Continuous Fiber-reinforced Thermoplastic Composites,
Journal of Thermoplastic Composite Materials, 20; 17, DOI:
10.1177/0892705707068069 http://dx.doi.org/10.1177/0892705707068069 |
| |
| 55.
Abounaim, M., (2011), Process development for the manufacturing of flat
knitted innovative 3D spacer fabrics for high performance composite
applications, PhD Thesis,Technische Universität Dresden, Germany |
| |
56.
Alagirusamy, R., Ogale, V. (2005), Development and Characterization of
GF/PET, GF/Nylon, and GF/PP Commingled Yarns for Thermoplastic
Composites, Journal of Thermoplastic Composite Materials; 18; 269,
DOI:10.1177/0892705705049557 http://dx.doi.org/10.1177/0892705705049557 |
| |
| 57.
Choi, B., D., Diestel, O., Offermann, P., Hübner, T., Mäder, E.,
(2001), Weiterentwicklung von Commingling-Hybridgarnen für
thermoplastische Faserverbundwerkstoffe 11.Techtextil Symposium,
Vortragsnummer 212/219 |
| |
| 58.
Optimierung des Commingling-Prozesses zur Herstellung von Hybridgarnen
für langfaserverstärkte Thermoplaste (AiFProjekt Nr. 11644 B),
(1998-2000), TU Dresden,
http://tudresden.de/die_tu_dresden/fakultaeten/fakultaet_maschinenwesen/itm/forschung
/ forschungsthemen / thermoplaste |
| |
| 59.
Gries, T., Janetzko, S., Kravaev, P., (2011), Textile
Verstärkungsstrukturen – Übersicht der Forschungsaktivitäten im Rahmen
des SFB 532, 6th Colloquium on Textile Reinforced Structures (CTRS6) |
| |
60.
Brünig, H., Beyreuther, R., Vogel, R. and Tändler, B., (2003), Melt
Spinning of Fine and Ultra Fine PEEK-filaments, J. Materials Science,
38(10): 2149–2153. http://dx.doi.org/10.1023/A:1023719912726 |
| |
| 61.
Lauke, B., Bunzel U., Schneider, K., (1998), Delaminationsverhalten von
langfaserverstärkten thermoplastischen UD-Verbunden, hergestellt aus
unterschiedlichen Hybridgarnstrukturen, Materialwiss. und
Werkstofftechnik 28, S. 465-474 |
| |
62.
Kravaev P., Stolyarov O., Seide G., Gries T., (2013) A method for
investigating blending quality of commingled yarns, Textile Research
Journal 83(2) 122–129, DOI:10.1177/0040517512456760 http://dx.doi.org/10.1177/0040517512456760 |
| |
63.
Kravaev P., Stolyarov O., Seide G., Gries T., (2014) Influence of
process parameters on filament distribution and blending quality in
commingled yarns used for thermoplastic composites, Journal of
Thermoplastic Composite Materials 2014, Vol. 27(3)350–363, DOI:
10.1177/0892705712446167 http://dx.doi.org/10.1177/0892705712446167 |
| |
64.
Sakaguchi, M., Nakai A., Hamada H., Takeda N., (2000), The Mechanical
Properties of Unidirectional Thermoplastic Composites Manufactured by a
Micro-Braiding Technique. Composites Science and Technnology, 60: p.
717-722. http://dx.doi.org/10.1016/S0266-3538(99)00175-X |
| |
| 65.
Laberge-Lebel, L., (2005),Manufacturing of Braided Thermoplastic
Composites with Commingled Fibers, M.Sc. Thesis, Concordia University,
Canada |
| |
66.
Zhou, F., L., Gong, R., H., Porat, I., (2010), Nano-coated hybrid
yarns using electro spinning, Surface and Coatings Technology, 204, 3459
– 3463 http://dx.doi.org/10.1016/j.surfcoat.2010.04.021 |
| |
67.
Foroughi, J., Spinks, G., M., Antiohos, D., Mirabedini, A., Gambhir,
S., Wallace, G., G., Shaban R. Ghorbani, G., S, Peleckis,G., Kozlov, M.,
E., Marcio D., Lima, E., M., Baughman., R., H., (2014), Highly
Conductive Carbon Nanotube-Graphene Hybrid Yarn, Adv. Funct. Mater., 24,
5859–5865 http://dx.doi.org/10.1002/adfm.201401412 |
| |
68.
Hasan M., M., B., Offermann M., Haupt M., Nocke A., Cherif, C., (2014),
Carbon filament yarn-based hybrid yarn for the heating of
textile-reinforced concrete, Journal of Industrial Textiles, 44: 183,
DOI: 10.1177/1528083713480380 http://dx.doi.org/10.1177/1528083713480380 |
| |
69.
Hasan M., M., B., Nocke A., Cherif, C., (2013), High Temperature
Resistant Insulated Hybrid Yarns for Carbon Fiber Reinforced
Thermoplastic Composites, Journal of Applied Polymer Science, DOI:
10.1002/APP.39270 http://dx.doi.org/10.1002/app.39270 |
| |
70.
Mountasir A., Hoffmann G., Cherif C., (2013) Development of
multilayered woven panels with integrated stiffeners in the transverse
and longitudinal directions for thermoplastic lightweight applications,
Textile Research Journal 83(14) 1532–1540, DOI: 10.1177/0040517512474367 http://dx.doi.org/10.1177/0040517512474367 |
| |
71.
Barani, H., (2014), Antibacterial continuous nanofibrous hybrid yarn
through in situsynthesis of silver nanoparticles: Preparation and
characterization, Materials Science and Engineering C, 43, 50–57 http://dx.doi.org/10.1016/j.msec.2014.07.004 |
| |
72.
Baghaei, B., Skrifvars M., Berglin, L., (2013), Manufacture and
characterisation of thermoplastic composites made from PLA/hemp
co-wrapped hybrid yarn prepregs, Composites: Part A, 50, 93-101,
http://dx.doi.org/10.1016/j.compscitech.2013.10.011 http://dx.doi.org/10.1016/j.compscitech.2013.10.011 |
| |
73.
Baghaei, B., Skrifvars M., Berglin, L., (2015), Characterization of
thermoplastic natural fibre composites made from woven hybrid yarn
prepregs with different weave pattern, Composites:Part A 76 (2015)
154–161 http://dx.doi.org/10.1016/j.compositesa.2015.05.029 |
| |
74.
Köckritz, T., Schiefer T., Jansen, I., Beyer E., (2013), Improving the
bond strength at hybrid-yarn textile thermoplastic composites for
high-technology applications by laser radiation, International Journal
of Adhesion & Adhesives, 46(2013)85–94 http://dx.doi.org/10.1016/j.ijadhadh.2013.06.004 |
| |
75.
Thieme M., Boehm R., Gude, M., Hufenbach,W., (2014), Probabilistic
failure simulation of glass fibre reinforced weftknitted thermoplastics,
Composites Science and Technology 90 (2014) 25–31,
http://dx.doi.org/10.1016/j.compscitech.2013.10.011 http://dx.doi.org/10.1016/j.compscitech.2013.10.011 |
| |
76.
Döbrich, O., Gereke, T., Cherif, C., Krzywinski, S., (2013) Analysis
and finite element simulation of the draping process of multilayer knit
structures and the effects of a localized fixation, Advanced Composite
Materials, 22:3, 175-189, DOI:10.1080/09243046.2013.791239 http://dx.doi.org/10.1080/09243046.2013.791239 |
| |
|