Termoplastik Kompozitler için Hibrit İplik Üretimi

« Sayıya Dön  
Yıl :2016 (Cilt:23)
Sayı :101
Yazarlar :Müslüm KAPLAN
DOI: 10.7216/1300759920162310106
Makale Özeti :PDF İndir
Makale :PDF İndir
Kaynaklar:
1. http://ec.europa.eu/clima/policies/roadmap/index_en.htm,16.12.2014
 
2. http://www.bmub.bund.de/themen/klima-energie/, 16.12.2014
 
3. http://ec.europa.eu/clima/policies/transport/vehicles/cars/index_en.htm, 16.12.2014
 
4. R&G Faserverbundwerkstoffe GmbH (2009), Handbuch Faserverbundwerkstoffe
 
5. Mountasir, A. (2009), Erweiterung und geometrische Modellierung der spacer fabric Strukturen in Kombination von Faltenweb- und Jacquardeinrichtung im Hinblick auf die Funktionsintegration, Technische Universität Dresden, ITM, Master-Arbeit Nr:1357, 2009
 
6. Flemming, M.; Ziegmann, G.; Roth, S. (1996) Faserverbundbauweisen, Halbzeuge und Bauweisen, Springer-Verlag Berlin Heidelberg, ISBN: 3540606165
http://dx.doi.org/10.1007/978-3-642-61432-3
 
7. Schemme, M., Werkstoffliche Grundlagen langfaserverstärkter Thermoplaste Werkstoffliche Grundlagen, EATC Automative Seminar, Wolsburg/Germany, 01.07.2003
 
8. Choi, B.D. (2005): Entwicklung von Commingling-Hybridgarnen für faserverstärkte thermoplastische Verbundwerkstoffe. Technische Universität Dresden, Dissertation
 
9. Lehmann, B.; Herzberg, C. (2011): Garnkonstruktionen und Garnbildungstechniken. In: Cherif, Ch. (Hrsg.): Textile Werkstoffe für den Leichtbau. Berlin/Heidelberg: Springer- Verlag, ISBN 978-3-642-17991-4, S. 111-170
http://dx.doi.org/10.1007/978-3-642-17992-1_4
 
10. Wulfhorst, B.; Tetzlaff, G.; Kaldenhoff, R., (1992), Herstellung von Hybridgarnen für den Einsatz in Faserverbundwerkstoffen Chemiefasern/Textilindustrie 42/94, H. März, S. T10-T11
 
11. Gong, R., H., (2011), Specialist yarn and fabric structures, developments and applications, Woodhead Publishing Limited, Part 2 s.21-55
 
12. Sawhney, A., P., S., Ruppenicker, G., F., Kimmel, L., B., Robert, K., Q., (1992), Comparison of filament-core spun yarns produced by new and conventional methods, Textile Research Journal, 62(2), 67–73
http://dx.doi.org/10.1177/004051759206200202
 
13. Wu, W., Y., Lee. J., Y., (1995), Twist in the Spinning of a Composite Yarn, Textile Research Journal, 65:522-526.
http://dx.doi.org/10.1177/004051759506500906
 
14. Huh, Y., Kim, Y., R., Oxenham W., (2002), Analyzing Structural and Physical Properties of Ring, Rotor, and Friction Spun Yarns, Textile Research Journal; 72; 156, DOI:10.1177/004051750207200212
http://dx.doi.org/10.1177/004051750207200212
 
15. Basu, A., (2000), Influence of Yarn Structural Parameters on Rotor-spun Yarn Properties, The Journal of The Textile Institute, 91:1, 179-182, DOI: 10.1080/00405000008659498
http://dx.doi.org/10.1080/00405000008659498
 
16. Pouresfandiari F., Fushimi, S., Sakaguchi A., Saito, H. Toriumi, K., Nishimatsu, T., Shimizu, Y., Shirai, H., Matsumoto, Y., I., Gong, H., (2002), Spinning conditions and characteristics of open-end rotor spun hybrid yarns, Textile Research Journal, 72(1), 61–70
 
17. Cheng, K., B., Murray, R., (2000), Effects of Spinning Conditions on Structure and Properties of Open-End Cover- Spun Yarns, Textile Research Journal, 690-5
http://dx.doi.org/10.1177/004051750007000806
 
18. Klein W., (2009), The rieter Manuel of spinning Volume VI, The Textile Institute, Manchester, Woodhead Publishing, UK.
 
19. Cheng, K., B., Cheng, T., W., Lee, K., C., Ueng, T., H., Hsing, W., H., (2003), Effects of yarn constitutions and fabric specifications on electrical properties of hybrid woven fabrics, Composites: Part A 34 971–978
http://dx.doi.org/10.1016/S1359-835X(03)00178-7
 
20. Fischer TECH GARNE GmbH, http://www.fischertechgarne.at/, 31.12.2014
 
21. Kaldenhoff, R., (1995), Friktionsspinn-Hybridgarne als neuartige textile Halbzeuge zur Herstellung von Faserverbundkunststoffen, Dissertation, ITA Aachen
 
22. Abbott, G., M., Freischmidt, G., (1985), Wrapped-yarn reinforced composites. II. Composite properties, Composites Science and Technology, 24(2), 147–158.
http://dx.doi.org/10.1016/0266-3538(85)90056-9
 
23. Sawhney, A., P., S., Ruppenicker, G., F., Kimmel L., B., Robert, K., Q., (1992), Comparison of filament-core spun yarns produced by new and conventional methods, Textile Research Journal, 62(2), 67–73.
http://dx.doi.org/10.1177/004051759206200202
 
24. Lauke, B., Bunzel U., Schneider, K., (1998), Effect of hybrid yarn structure on delamination behavior of thermoplastic composites, Composites Part A: Applied Sciences and Manufacturing, 29, 1397–1409.
http://dx.doi.org/10.1016/S1359-835X(98)00059-1
 
25. Wulfhorst, B., (2003), Tekstil Üretim Yöntemleri, Çev.: Demir, A., Torun, A., R., Carl Hanser Verlag, München
 
26. Patent TR200301753A2 (2005), Ön hazırlıksız bobinlerden bobine direkt büküm yapabilen ve büküm sıklığı iğ hızından bağımsız ayarlanabilen büküm makinesi ve metodu, Agteks örme ve tekstil endüstrileri san. ve. Tic. Ltd. şirketi
 
27. Paul, C., (2012), Funktionalisierung von duroplastischen Faserverbundwerkstoffen durch Hybridgarne, Vieweg+Teubner Verlag
 
28. Patent US 4856147, (1989) Composites of stretch broken aligned fiber carbon and glass reinforced resin, Armiger T. E. , Edison D. H. , Lauterbach H. G. , Layton J. R. , Okine R. K.,
 
29. Patent, WO8901999 (A1), (1989) Hybrid Yarn, Heltra INC.
 
30. Braches, E., (1991), The use of hybrid yarns in the manufacture of fibre reinforced thermoplastic composite materials, Proceedings of Techtextil Symposium, Frankfurt, Germany
 
31. Gibson, A., G., Manson, J., A., (1992) Impregnation technology for termoplastic matrix composites, Composites Manufacturing, 3:223-233.
http://dx.doi.org/10.1016/0956-7143(92)90110-G
 
32. Patent US 5425796 A (1995), Method of and an apparatus for forming a composite thread including stretching of thermoplastic filaments, Vetrotex France S.A.
 
33. Patent DE19915955A1 (2000), Vorrichtung zum Herstellen eines strangartigen Faserverbundes aus Glasfasern, Schuller Gmbh
 
34. http://www.ocvreinforcements.com/solutions/Thermopreg.aspx, 31.12.2014
 
35. Mäder, E., Rothe, C., Gao, S., L., (2007), Commingled yarns of surface nanostructured glass and polypropylene filaments for effective composite properties. In: Journal of Materials Science 42 pp. 8062-8070
http://dx.doi.org/10.1007/s10853-006-1481-x
 
36. Mäder, E., Rothe, C., Brunig, H., Leopold, T., (2007), Online spinning of commingled yarns - equipment and yarn modification by tailored fibre surfaces. In: Key Engineering Materials, 334-335, S. 229–232. DOI 10.4028
http://dx.doi.org/10.4028/www.scientific.net/kem.334-335.229
 
37. Mäder, E., Rothe, C., (2006), Tailoring of commingled yarns for effective composite properties. In: Chemical Fibers International 56 (2006) pp. 298-300
 
38. Abounaim, M., D., Hoffmann, G., Diestel, O., Cherif, C., (2009), Development of flat knitted spacer fabrics for composites using hybrid yarns and investigation of twodimensional mechanical properties. In: Textile Research Journal 79, Nr. 7, S. 596–610. DOI 10.1177/0040517508101462s
 
39. Mäder, E., Rausch, J., Schmidt, N., (2008), Commingled yarns– Processing aspects and tailored surfaces of polypropylene/glass composites, Composites: Part A 39 612–623
http://dx.doi.org/10.1016/j.compositesa.2007.07.011
 
40. Demir, A., (2006), Sentetik Filament İplik Üretim ve Tekstüre Teknolojileri, Şan Ofset, İstanbul.
 
41. Alagirusamy R., and Ogale V., (2004), Commingled and Air Jet-textured Hybrid Yarns for Thermoplastic composites, Journal of Industrial Textiles 33: 223, DOI: 10.1177/1528083704044360
http://dx.doi.org/10.1177/1528083704044360
 
42. Bunzel, U., Lauke, B., Schneider, K., (1999), Air Textured Hybrid Yarn Structures and Their Influence on the Properties of Long Fiber Reinforced Thermoplastic Composites, TechnischeTextilien, 42(1): 10–12 + E2
 
43. Wakeman, M., D., Cain, T., A., Rudd, C., D., Brooks, R., Long, A., C., (1998), Compression Moulding of Glass and Polypropylene Composites for Optimised Macro- and Micro- Mechanical Properties – 1 Commingled Glass and Polypropylene, Composite Science Technology, 58(12): 1879–1898
http://dx.doi.org/10.1016/S0266-3538(98)00011-6
 
44. Alagirusamy, R., Ogale, V. (2004). Commingled and Air Jettextured Hybrid Yarns for Thermoplastic Composites. Journal of Industrial Textiles, 33(4), 223–243. doi:10.1177/1528083704044360
http://dx.doi.org/10.1177/1528083704044360
 
45. Alagirusamy, R., Ogale, V. (2008), Properties of GF/PP Commingled Yarn Composites, Journal of Thermoplastic Composite Materials 21, Nr. 6, S. 511–523. DOI 10.1177/0892705708091281
http://dx.doi.org/10.1177/0892705708091281
 
46. Mankodi, H., Patel, P., (2010), Study the effect of commingling parameters on glass/ poly-propylene hybrid yarn properties, Autex Research Journal, Vol 9, No 3
 
47. COMFIL: Yarns/Rovings. http://www.comfil.biz/products/ yarnsroving.php, 31.12.2014
 
48. Patent DE202008013041, (2008), Linienförmiges Kunststoffprofil mit strukturierter Oberfläche, Sächsisches Textilforschungsinstitut e.V.
 
49. http://www.kvb-chemnitz.de/, 31.12.2014
 
50. Schappe Techniques, http://www.schappe.com/, 31.12.2104
 
51. Patent FR2958663 (A1), (2011), Method for obtaining preconsolidated hybrid thread i.e. carbon fibers, involves forming pre-consolidated hybrid wire by reducing mass volume of hybrid wire by subjecting portion of wire to predetermined pressur, Schappe SA
 
52. Golzar, M., (2004), Melt Spinning of Fine PEEK Filaments, PhD Thesis, TU Dresden, Germany.
 
53. Acar,M., Turton, R., K.,Wray G., R., (1986), Analysis of the air-jet yarn-texturing process, IV–Fluid forces acting on the filaments and the effects of filament cross-sectional area and shape, Journal of Textile Institute, 77(4), 247–254.
http://dx.doi.org/10.1080/00405008608658417
 
54. M. Golzar, H. Brünig and E. Mäder, (2007), Commingled Hybrid Yarn Diameter Ratio in Continuous Fiber-reinforced Thermoplastic Composites, Journal of Thermoplastic Composite Materials, 20; 17, DOI: 10.1177/0892705707068069
http://dx.doi.org/10.1177/0892705707068069
 
55. Abounaim, M., (2011), Process development for the manufacturing of flat knitted innovative 3D spacer fabrics for high performance composite applications, PhD Thesis,Technische Universität Dresden, Germany
 
56. Alagirusamy, R., Ogale, V. (2005), Development and Characterization of GF/PET, GF/Nylon, and GF/PP Commingled Yarns for Thermoplastic Composites, Journal of Thermoplastic Composite Materials; 18; 269, DOI:10.1177/0892705705049557
http://dx.doi.org/10.1177/0892705705049557
 
57. Choi, B., D., Diestel, O., Offermann, P., Hübner, T., Mäder, E., (2001), Weiterentwicklung von Commingling-Hybridgarnen für thermoplastische Faserverbundwerkstoffe 11.Techtextil Symposium, Vortragsnummer 212/219
 
58. Optimierung des Commingling-Prozesses zur Herstellung von Hybridgarnen für langfaserverstärkte Thermoplaste (AiFProjekt Nr. 11644 B), (1998-2000), TU Dresden, http://tudresden.de/die_tu_dresden/fakultaeten/fakultaet_maschinenwesen/itm/forschung / forschungsthemen / thermoplaste
 
59. Gries, T., Janetzko, S., Kravaev, P., (2011), Textile Verstärkungsstrukturen – Übersicht der Forschungsaktivitäten im Rahmen des SFB 532, 6th Colloquium on Textile Reinforced Structures (CTRS6)
 
60. Brünig, H., Beyreuther, R., Vogel, R. and Tändler, B., (2003), Melt Spinning of Fine and Ultra Fine PEEK-filaments, J. Materials Science, 38(10): 2149–2153.
http://dx.doi.org/10.1023/A:1023719912726
 
61. Lauke, B., Bunzel U., Schneider, K., (1998), Delaminationsverhalten von langfaserverstärkten thermoplastischen UD-Verbunden, hergestellt aus unterschiedlichen Hybridgarnstrukturen, Materialwiss. und Werkstofftechnik 28, S. 465-474
 
62. Kravaev P., Stolyarov O., Seide G., Gries T., (2013) A method for investigating blending quality of commingled yarns, Textile Research Journal 83(2) 122–129, DOI:10.1177/0040517512456760
http://dx.doi.org/10.1177/0040517512456760
 
63. Kravaev P., Stolyarov O., Seide G., Gries T., (2014) Influence of process parameters on filament distribution and blending quality in commingled yarns used for thermoplastic composites, Journal of Thermoplastic Composite Materials 2014, Vol. 27(3)350–363, DOI: 10.1177/0892705712446167
http://dx.doi.org/10.1177/0892705712446167
 
64. Sakaguchi, M., Nakai A., Hamada H., Takeda N., (2000), The Mechanical Properties of Unidirectional Thermoplastic Composites Manufactured by a Micro-Braiding Technique. Composites Science and Technnology, 60: p. 717-722.
http://dx.doi.org/10.1016/S0266-3538(99)00175-X
 
65. Laberge-Lebel, L., (2005),Manufacturing of Braided Thermoplastic Composites with Commingled Fibers, M.Sc. Thesis, Concordia University, Canada
 
66. Zhou, F., L., Gong, R., H., Porat, I., (2010), Nano-coated hybrid yarns using electro spinning, Surface and Coatings Technology, 204, 3459 – 3463
http://dx.doi.org/10.1016/j.surfcoat.2010.04.021
 
67. Foroughi, J., Spinks, G., M., Antiohos, D., Mirabedini, A., Gambhir, S., Wallace, G., G., Shaban R. Ghorbani, G., S, Peleckis,G., Kozlov, M., E., Marcio D., Lima, E., M., Baughman., R., H., (2014), Highly Conductive Carbon Nanotube-Graphene Hybrid Yarn, Adv. Funct. Mater., 24, 5859–5865
http://dx.doi.org/10.1002/adfm.201401412
 
68. Hasan M., M., B., Offermann M., Haupt M., Nocke A., Cherif, C., (2014), Carbon filament yarn-based hybrid yarn for the heating of textile-reinforced concrete, Journal of Industrial Textiles, 44: 183, DOI: 10.1177/1528083713480380
http://dx.doi.org/10.1177/1528083713480380
 
69. Hasan M., M., B., Nocke A., Cherif, C., (2013), High Temperature Resistant Insulated Hybrid Yarns for Carbon Fiber Reinforced Thermoplastic Composites, Journal of Applied Polymer Science, DOI: 10.1002/APP.39270
http://dx.doi.org/10.1002/app.39270
 
70. Mountasir A., Hoffmann G., Cherif C., (2013) Development of multilayered woven panels with integrated stiffeners in the transverse and longitudinal directions for thermoplastic lightweight applications, Textile Research Journal 83(14) 1532–1540, DOI: 10.1177/0040517512474367
http://dx.doi.org/10.1177/0040517512474367
 
71. Barani, H., (2014), Antibacterial continuous nanofibrous hybrid yarn through in situsynthesis of silver nanoparticles: Preparation and characterization, Materials Science and Engineering C, 43, 50–57
http://dx.doi.org/10.1016/j.msec.2014.07.004
 
72. Baghaei, B., Skrifvars M., Berglin, L., (2013), Manufacture and characterisation of thermoplastic composites made from PLA/hemp co-wrapped hybrid yarn prepregs, Composites: Part A, 50, 93-101, http://dx.doi.org/10.1016/j.compscitech.2013.10.011
http://dx.doi.org/10.1016/j.compscitech.2013.10.011
 
73. Baghaei, B., Skrifvars M., Berglin, L., (2015), Characterization of thermoplastic natural fibre composites made from woven hybrid yarn prepregs with different weave pattern, Composites:Part A 76 (2015) 154–161
http://dx.doi.org/10.1016/j.compositesa.2015.05.029
 
74. Köckritz, T., Schiefer T., Jansen, I., Beyer E., (2013), Improving the bond strength at hybrid-yarn textile thermoplastic composites for high-technology applications by laser radiation, International Journal of Adhesion & Adhesives, 46(2013)85–94
http://dx.doi.org/10.1016/j.ijadhadh.2013.06.004
 
75. Thieme M., Boehm R., Gude, M., Hufenbach,W., (2014), Probabilistic failure simulation of glass fibre reinforced weftknitted thermoplastics, Composites Science and Technology 90 (2014) 25–31, http://dx.doi.org/10.1016/j.compscitech.2013.10.011
http://dx.doi.org/10.1016/j.compscitech.2013.10.011
 
76. Döbrich, O., Gereke, T., Cherif, C., Krzywinski, S., (2013) Analysis and finite element simulation of the draping process of multilayer knit structures and the effects of a localized fixation, Advanced Composite Materials, 22:3, 175-189, DOI:10.1080/09243046.2013.791239
http://dx.doi.org/10.1080/09243046.2013.791239
 
Tekstil ve Mühendis - Copyright © 2012