Archive
Year | 2012 (Volume:19) |
Issue | 85 (ICONTEX 2011 Special Issue) |
Pages | 1-51 |
Cover Page | Cover Page |
Articles
1 | Piezoelectric Mono-Filament Extrusion for Green Energy Applications From Textiles DOI:10.7216/130075992012198501 Authors : Derman VATANSEVER, R. L. HADIMANI, Tahir SHAH, Elias SIORES Article Detail | Abstract | Full Text | References |
2 | Production and Analysis of Composite Nanofiber and Heat Applied Nanofiber DOI:10.7216/130075992012198502 Authors : Onur AYAZ, Nuray UÇAR, Elif BAHAR, Mustafa OKSUZ, Mehmet UCAR, Aysen ONEN, Ali DEMİR, Youjiang WANG Article Detail | Abstract | Full Text | References |
3 | Knot- and Loop Tensile Tests of Ultra High-Modulus Pitch-Based Carbon Fibers DOI:10.7216/130075992012198503 Authors : Michael GLOWANIA, Sven SCHNEIDERS, Johanne HESSELBACH, Kristina SIMONIS, Thomas GRIES Article Detail | Abstract | Full Text | References |
4 | Moisture Transport Properties of Double Jersey Mattress Ticking Fabrics DOI: 10.7216/130075992012198504 Authors : Sena TERLİKSİZ, Fatma KALAOĞLU, Selin Hanife ERYÜRÜK Article Detail | Abstract | Full Text | References |
5 | Influence of DBD Plasma Modification in the Dyeing Process of Polyamide DOI:10.7216/130075992012198505 Authors : António Pedro SOUTO, Fernando Ribeiro OLIVEIRA, Marta FERNANDES, Noémia CARNEIRO Article Detail | Abstract | Full Text | References |
6 | Determination and Characterization of Triclosan on Polyethylene Terephthalate Fibers DOI:10.7216/130075992012198506 Authors : Mehmet ORHAN Article Detail | Abstract | Full Text | References |
7 | Investigation of Joints For Functional OPV-Foils on Textiles DOI:10.7216/130075992012198507 Authors : Volker NIEBEL, Tristan KOTTHOFF, Thomas GRIES Article Detail | Abstract | Full Text | References |
8 | Development of The Garment Size System and Computer-Based Body Models DOI:10.7216/130075992012198508 Authors : Darko UJEVİÉ, Slavenka PETRAK, Marijan HRASTINSKI, Maja MAHNIÉ Article Detail | Abstract | Full Text | References |
9 | Determination of Levelness-Unlevelness Index Using Scanner Data DOI:10.7216/130075992012198509 Authors : Tayebe SOLEYMANIAN, Seyed Hossien AMIRSHAHI, Mansoureh GHANBAR Article Detail | Abstract | Full Text | References |
10 | Bio-Composites: Processing of Thermoplastic Biopolymers and Industrial Natural Fibres from Staple Fibre Blends Up To Fabric for Composite Applications DOI:10.7216/130075992012198510 Authors : Bayram ASLAN, S. RAMASWAMY, M. RAINA, Thomas GRIES Article Detail | Abstract | Full Text | References |
References
1. Kawai, H., 1969, The
piezoelectricity of poly(vinylidene fluoride), Jpn. J. Appl. Phys., 8, 975-976.
http://dx.doi.org/10.1143/JJAP.8.975
2. Sencadas, V., Moreira, V.M., Lanceros-Mendez, S., Pouzada, A.S., Gregorio
Jr., R., 2006, á-to-â Transformation on PVDF Films Obtained by Uniaxial
Stretch, Materials Science Forum, 514-516, 872-876.
http://dx.doi.org/10.4028/www.scientific.net/MSF.514-516.872
3. Zhang, Q., Mo, Z., Zhang, H., Liu, S., Cheng, S. Z. D., 2001, Crystal
transitions of nylon 11 under drawing and annealing, Polymer, 42, 5543-5547.
http://dx.doi.org/10.1016/S0032-3861(01)00050-7
4. Takase, Y., Lee, J. W., Scheinbeim, J. I., Newman B. A., 1991,
High-Temperature Characteristics of Nylon-11 and Nylon- 7Piezoelectrics,
Macromolecules, 24(25), 6644-6652.
http://dx.doi.org/10.1021/ma00025a014
5. Ramos, M.M.D., Correia, H.M.G., Lanceros-Mendez, S., 2005, Atomistic
modelling of processes involved in poling of PVDF, Computational Materials
Science, 33, 230-236.
http://dx.doi.org/10.1016/j.commatsci.2004.12.041
6. Ganster, J., Geiss, D., 1985, Polarization and piezoelectric coefficients of
poly(vinylidene fluoride) form-l-films: A model including crystalline
orientation, Polymer, 26, 1825-1828.
http://dx.doi.org/10.1016/0032-3861(85)90009-6
7. Marsilius, M., Granzow, T., Jones, J., 2011, Effect of electrical and
mechanical poling history on domain orientation and piezoelectric properties of
soft and hard PZT ceramics, Sci. Technol. Adv. Mater.
8. Costa, C. M., Sencadas, V.,
Mano, J.F., Lanceros-Mendez, S., (2006) Effect of Poling on the Mechanical
Properties of âpoly (Vinylidene Fluoride), Materials Science Forum, 514-516,
951-955.
http://dx.doi.org/10.4028/www.scientific.net/MSF.514-516.951
9. Patel, I., Siores, E., Shah, T., 2010, Utilisation of smart polymers and
ceramic based piezoelectric materials for scavenging wasted energy, Sensors and
Actuators A, 159, 213-218.
http://dx.doi.org/10.1016/j.sna.2010.03.022
10. Hausler E., Stein, E., 1984, Implantable Physiological Power Supply with
PVDF Film, Ferroelectrics 60, 277-282.
http://dx.doi.org/10.1080/00150198408017528
11. Shenck, N.S., Paradiso, J.A., 2005, Energy Scavenging with Shoe-Mounted
Piezoelectrics, IEEE micro, 1-9.
12. Ramadass, Y.K., Chandrakasan, A.P., 2010, An Efficient Piezoelectric Energy
Harvesting Interface Circuit Using a Bias-Flip Rectifier and Shared Inductor,
IEEE Journal of Solid-State Circuits, 45 (1), 189-204.
http://dx.doi.org/10.1109/JSSC.2009.2034442
13. Priya, S., 2007, Advances in energy harvesting using low profile
piezoelectric transducers, J Electroceram, 19, 165-182.
http://dx.doi.org/10.1007/s10832-007-9043-4
14. Sakata, M., Wakabayashi, S., Goto, H., Totani, H.,, 1996, Sputtered high |d
| coefficient PZT thin film for 31 microactuators, Proceedings on Micro Electro
Mechanical Systems, 263-266.
15. Wang, Y., Ren, K., Zhang, Q. M., 2007, Direct piezoelectric response of
piezopolymer polyvinylidene fluoride under high mechanical strain and stress,
Appl. Phys. Lett., 91, 222905.
http://dx.doi.org/10.1063/1.2819531
16. Mathur, S. C., Scheinbeim, J. I., Newman, B. A., 1984, Piezoelectric
Properties and Ferroelectric Hysteresis Effects in miaxially Stretched Nylon 11
Films, J. Appl. Phys., 56(9), 2419-2425.
http://dx.doi.org/10.1063/1.334294
17. Wu, S. L., Scheinbeim, J. I., Newman, B. A., 1999, Ferroelectricity and
Piezoelectricity of Nylon 11 Films with Different Draw Ratios, J. Polymer
Science: Part B: Polymer Physics, 37, 2737-2746.
http://dx.doi.org/10.1002/(SICI)1099-0488(19991001)37:19<2737::AID-POLB3>3.0.CO;2-O
18. Vatansever, D., Hadimani, R. L., Shah T., Siores, E., 2011, An
investigation of energy harvesting from renewable sources with PVDF and PZT,
Smart Materials and Structures, 20, 055019.
http://dx.doi.org/10.1088/0964-1726/20/5/055019
19. Siores, E., Hadimani R. L.,
Vatansever, D., 2010, Piezoelectric Polymer Element & Production Method
& Apparatus Therefor, GB Patent Application Number 1015399.7
20. Mirfakhrai, T., Madden, J. D.W., Baughman, R. H., 2007, Polymer Artificial
Muscles, MaterialsToday, 10(4), 30-38.
http://dx.doi.org/10.1016/S1369-7021(07)70048-2
21. Swallow, L. M., Luo, J. K., Siores, E., Patel, I. and Dodds, D., 2008, A
piezoelectric fibre composite based energy harvesting device for potential
wearable applications, Smart Materials and Structures, 17(2), 025017.
http://dx.doi.org/10.1088/0964-1726/17/2/025017
22. Vatansever, D., Siores, E., Hadimani R. L., Shah, T., 2011, Advanced in
Modern Woven Fabrics Technology, InTech Publisher, 23-38.
References
1. Barron, K., Joo, Y., Zhou, H., ‘Electrospinning of Polypropylene Nanocomposite Nanofibers from Solution’, http://matdl.org/repository/eserv/matdl:403/n2004_CCMR_REU_Barron.pdf (2004, accessed June 2011).
2. Jarusuwannapoom, T., Hongrojjanawiwat, W., Jitjaicham, S., Wannatong, L., Nithitanakul, M., Pattamaprom, C., Koombhongse, P., Rangkupan, R., Supaphol, P., (2005), Effect of Solvents on Electro-spinnability of polystyrene solutions and morphological appearance of resulting electrospun polystyrene fibers, European Polymer Journal; 41: 409-421.
http://dx.doi.org/10.1016/j.eurpolymj.2004.10.010
3. Liu, D., Fan, Z., Sun, P., Dong, X., (2004), Solution Properties of Chlorinated Polypropylene and Maleic Anhydride Grafted Chlorinated Polypropylene, Physics and Chemistry of Liquids; 42: 551–560.
http://dx.doi.org/10.1080/00319100410001697909
4. Funasaka, T., Ashihara, T., Maekawa, T., Ohno, S., Meguro, M., Nishino, T., Nakamae, K., (1999), Adhesive Ability and Solvent Solubility of Propylene-butene Copolymers Modified With Maleic Anhydride, International Journal of Adhesion & Adhesives; 19: 367-371.
http://dx.doi.org/10.1016/S0143-7496%2898%2900072-4
5. Feng, S., Shen, X., (2010), Electrospinning and Mechanical Properties of Polystyrene and Styrene–Isoprene–Styrene Block Copolymer Blend Nanofibres, Journal of Macromolecular Science R _, Part B: Physics;49:345–354
6. Junkasem, J., Rujiranavit, R., Supaphol, P., (2006), Fabrication of α-chitin whiskers-reinforced poly(vinyl alcohol) nanocomposite nanofibers by electrospinning, Nanotechnology; 17: 4519-4528.
http://dx.doi.org/10.1088/0957-4484/17/17/039
7. Peresin, M., S., Habibi, Y., Zoppe, J., O., Pawlak, J., J., Rojas, O., J., (2010), Nanofiber Composites of Polyvintl Alcohol and Cellulose Nanocrystals: Manufacture and Characterization, Biomacromolecules; 11: 674-68.
http://dx.doi.org/10.1021/bm901254n
PMid:20088572
8. Qui, W., Endo, T., Hirotsu, T., (2006), Interfacial Interaction, Morphology, and Tensile Properties of a Composite of Highly Crystalline Cellulose and Maleated Polypropylene, Wiley Periodicals, Inc. J Appl Polym Sci;102: 3830–3841.
http://dx.doi.org/10.1002/app.24846
9. Ucar, N., Bahar, E., Oksuz, M., Onen, A., Wang, Y., Ucar, M., Ayaz, O., Demir, A., (2011), Nano Composite Polymer Produced From Polypropylene And Nano Cellulose Whiskers, Polymer Composites, 27-28 April 2011, Pilsen, Czech Republic, 95-98.
References
1. Sharp, K.; Bogdanovich, A. E.; Tang, W.; Heider, D.; Advani, S.; Glowania, M (2008), High through-thickness thermal conductivity composites based on 3-D woven fiber architectures, AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference 49, p. 2126-2140.
2. Minus, M. L.; Kumar, S. (2005), The processing, properties, and structure of carbon fibers, Journal of the Minerals, Metals and Material Society 57, 2, p. 52-58
http://dx.doi.org/10.1007/s11837-005-0217-8
3. Nippon Steel Corporation (1997), High-modulus pitch-based carbon fibers for civil engineering and architectural applications, Tokyo.
4. Morgan, P. E. (2005), Carbon fibres and their composites. 1. Version-Boca Raton; London; New York; Singapore: Taylor and Francis Group.
5. Bahl, O. P.; Shen, Z.; Lavin, J. G.; Ross, R. A. (1998), Manufacture of carbon fibers, In Donnet J-B, Wang T K, Peng J C M and Rebouillat S: Carbon fibers, 3. Version-New York; Basel; Hong Kong; Marcel Dekker, Inc, p. 1-83.
6. Otani, S. (1981), Carbonaceous mesophase and carbon fibers, Molecular Crystaly and Liquid Crystals 63, p. 249-264.
http://dx.doi.org/10.1080/00268948108071999
7. Brooks, J. D.; Taylor, G. H. (1965), The formation of graphitizing carbons from the liquid phase, Carbon 3, 2, p. 185-193.
http://dx.doi.org/10.1016/0008-6223%2865%2990047-3
8. Lienhard IV, J.; Lienhard V, J. (2008), A Heat Transfer Textbook. Cambridge, USA: Phlogiston Press.
9. Deutsches Institut für Normung e.V. (1976), DIN 53 842 Knoten-Zugversuch an einfachen Garnen und Zwirnen., Berlin.
10. Deutsches Institut für Normung e.V. (1992), DIN 53 843 Schlingenzugversuch Garne. Deutsches Institut für Normung e.V., Berlin.
11. Glowania, M.; Lindner, D.; Linke, M.; Gries, T.; Heider, D. (2011), Influence of the pitch fiber reinforcement of CFRP on the mechanical and thermal conductivity properties, Proceedings of the International Conference on Composite Materials ICCM 18, ICC Center, Korea.
References
1. Amrit U. R., (2007), Bedding Textiles And Their Influence On Thermal Comfort And Sleep, AUTEX Research Journal, 8,4, 252-254.
2. Li Y., Wong A.S.W. (2006), Clothing Biosensory Engineering, Woodhead Publishing Limited, Cambridge, p. 61
3. Das A., Alagirusamy R., (2010), Science in Clothing Comfort, Woodhead Publishing India Pvt. Ltd., New Delhi, p. 41,42,107
http://dx.doi.org/10.1533/9780857092830
4. Yıldırım M., (2008), Üç Boyutlu Boşluklu Yuvarlak Örme Kumaşların Antistatik ve Termal Özelliklerinin Belirlenmesi, Master Thesis, Erciyes University, Kayseri.
5. Fangueiro R., Filgueiras A., Soutinho F, Meidi X., (2010), Wicking Behavior and Drying Capability of Functional Knitted Fabrics, Textile Research Journal, 80, 1522-1530
http://dx.doi.org/10.1177/0040517510361796
6. Pryczyńska E., Lipp-Symonowicz B., Wieczorek A., Gaszyński W., Krekora K., Bittner-Czapińska E., (2003), Sheet Fabrics with Biophysical Properties as Elements of Joint Prevention in Connection with First- and Second-Generation Pneumatic Anti-Bedsore Mattresses, Fibres & Textiles in Eastern Europe, 11, 4, 50-53.
7. Hong C. J., Kim B. J., (2007), A Study of Comfort Performance in Cotton and Polyester Blended Fabrics. I.Vertical Wicking Behavior, Fibers and Polymers, 8, 2, 218-224.
http://dx.doi.org/10.1007/BF02875795
8. Masoodi R., Pillai M.K, Varanasi P.P., (2010), Effect of Externally Applied Liquid Pressure on Wicking in Paper Wipes, Journal of Engineered Fibers and Fabrics, 5, 3, 49-66.
9. Patnaik A., Rengasamy R.S., Kothari V.K., Ghosh A., (2000), Wetting and Wicking in Fibrous Materials, Textile Progress, No 1.
10. Sampath M.B., Senthilkumar M., (2009), Effect of Moisture Management Finish on Comfort Characteristics of Microdenier Polyester Knitted Fabrics, Journal of Industrial Textiles, 39, 2, 163-173.
http://dx.doi.org/10.1177/1528083709102922
References
1. Ren,
C., Wang, K., Nie, Q., Wang, D., S. H., Guo, S., (2008), Surface modification
of PE film by DBD plasma in air, Applied Surface Science, 255, 3421-3425.
http://dx.doi.org/10.1016/j.apsusc.2008.09.064
2. Carneiro, N., Souto, A., Marimba, A., Tena, B., Ferreira, H., Magalhães, V.,
(2001), Dyeability of CORONA treated Fabric, Journal of Society of Dyers and
Colourists, 117, 298-302.
3. Borcia, G., Anderson, G., Brown, N., (2006), Adhesion properties of
polyamide-6 fibres treated by dielectric barrier discharge, Surface &
Coating Technology, 201:3074-3081.
http://dx.doi.org/10.1016/j.surfcoat.2006.06.021
4. Masaeli, E., Morshed, M., Tavanai, H., (2007), Study of the wettability
properties of polypropylene nonwoven mats by low-pressure oxygen plasma
treatment, Surf. Interface Anal., 39, 770-774.
http://dx.doi.org/10.1002/sia.2587
5. Gao, Z., Peng, S., Sun, J., Yao, L., Qiu, Y., (2010), The influence of
moisture on atmospheric pressure plasma etching of PA6 films, Current Applied
Physics, 10, 230-234.
http://dx.doi.org/10.1016/j.cap.2009.05.035
6. Sparavigna, A., (2008), Plasma Treatment advantages for textile, Cornell
University Library [physics.pop-ph], 1-16.
7. Petar, S., Mirjana, K., Adela, M., Biljana, P., Milorad, K., Andjelka, V.,
Bratislav, O., Dagan, M., Jagos, P., (2007), Wetting Properties of Hemp Fibers
Modified by Plasma Treatment, Journal of Natural Fibers, 4:25-33.
http://dx.doi.org/10.1300/J395v04n01_03
8. Kale, K., Palaskar, S., (2010), Atmospheric pressure plasma polymerization
of hexamethyldisiloxane for imparting water repellency to cotton fabric,
Textile Research Journal, 81 (6), 608-620.
http://dx.doi.org/10.1177/0040517510385176
9. Morent, R., De Geyter, N., Verschuren, J., De Clerck, K., Kiekens, P., Leys,
C., (2008), Non-thermal plasma treatment of textiles, Surface & Coating
Technology, 202, 3427-3449.
http://dx.doi.org/10.1016/j.surfcoat.2007.12.027
10. El-Zawahry, M., Ibrahim, N., Eid. M., (2006), The Impact of Nitrogen Plasma
Treatment upon the Physical-Chemical and Dyeing Properties of Wool Fabric,
Polymers-Plastics Technology and Engineering, 45, 10, 1123-1132.
http://dx.doi.org/10.1080/03602550600728943
11.
Oliveira, F., Souto, A., Carneiro, N., Nascimento, J., (2009), Surface
Modification on Polyamide 6.6 with Double Barrier Discharge (DBD) Plasma to
Optimise Dyeing Process by Direct Dyes, Materials Science Forum, 636-637,
846-852.
http://dx.doi.org/10.4028/www.scientific.net/MSF.636-637.846
12. Carneiro, N., Souto, A., Forster, F., Prinz, E., (2004), Continuous and
semicontinuous treatment of textile materials integrating corona discharge,
Patent in internationalization phase, Patent Number PCT/PT2004/000008 (2004).
13. Pappas, D., Bujanda, A., Demaree, J., Hirvonen, J., Kosik, W., Jensen, R.,
McKnight, S., (2006), Surface modification of polyamide fibers and films using
atmospheric plasmas, Surface and Coating technology, 201, 4384-4388.
14. Canal, C., Freddy, G., Molina, R., Erra, P., Ricard, A., (2007), Role of
the active species of plasmas involved in the modification of textile
materials, Plasma Processes and Polymers, 4, 445-454.
http://dx.doi.org/10.1002/ppap.200600199
15. Gorensek, M., Gorjanc, M., Bukosek, V., Kovac, J., Jovancic, P.,
Mihailovic, D., (2010), Funcionalization of PET Fabric by Corona and Nano
Silver, Textile Research Journal, 80(3), 253-262.
http://dx.doi.org/10.1177/0040517509105275
16. Brzezińsk, S., Kaleta, A., Kowalczyk, D., Malinowska, G., Gajdzcili, B.,
(2010), Effect of Changes in the Nanostructure of the Outer Layer of Synthetics
Fibers on their Dyeing Properties, Fibres&Textiles in Eastern Europe,
No4(81), pp.92-98.
17. Joshi, M., Bhattacharyya, A., Wazed, S., (2008), Characterization
Techniques for nanotechnology application in textile, Indian Journal of Fiber
& Textile Research, 33: 304-317.
18. Esena, P., Riccardi, C., Zanini, S., Tontini, M., Poletti, G., Orsini, F.,
(2005), Surface modification of PET film by a DBD device at atmospheric
pressure, Surface and Coating Technology, 200, 1-4, 664-667.
19. Wang, C., He, X., (2006), Effect of atmospheric pressure dielectric barrier
discharge air plasma on electrode surface, Applied Surface Science, 252, 2,
926-929.
http://dx.doi.org/10.1016/j.apsusc.2006.01.032
20. Shen, L., Dai, J., (2007), Improvement of hydrophobic properties of silk
and cotton by hexafluoropropene plasma treatment, Applied Surface Science, 253,
5051-2055.
http://dx.doi.org/10.1016/j.apsusc.2006.11.027
21. Raffaele, A., Selli, E., Barni, R., Riccardi, C., Orsini, F., Poletti, G.,
Meda, L., Rosaria, M., Massafra, B., Marcandalli, B., (2006), Cold
plasma-induced modification of the dyeing properties of poly(ethylene
terephthalate fibers, Applies Surface Science, 256, 2265-2275.
http://dx.doi.org/10.1016/j.apsusc.2005.04.013
22. Cai, Z., Qiu, Y., Zhang, C., Hwang, Y., Mccord, M., (2003), Effect of
Atmospheric Plasma Treatment on Desizing of PVA on Cotton, Textile Research
Journal, 73, 8, 670-674.
http://dx.doi.org/10.1177/004051750307300803
References
1.
Onodera, S., Yamada, K., Yamaji, Y., Ishikura, S. and Suzuki. S., (1986),
Chemical changes of organic compounds in chlorinated water: X. Formation of
polychlorinated methylphenoxymethylphenols (predioxins) during chlorination of
methylphenols in dilute aqueous solution. Journal of Chromatography A, 354,
293-303.
http://dx.doi.org/10.1016/S0021-9673(01)87030-8
2. Onodera, S., Ogawa, M., Yamawaki, C., Yamagishi. K. and Suzuki, S., (1989),
Production of polychlorinated phenoxyphenols (predioxins) by aqueous
chlorination of organic compounds, Chemosphere, 19, 675-680.
http://dx.doi.org/10.1016/0045-6535(89)90389-5
3. Onodera, S., Takahashi, M. and Suzuki, S., (1993), Chemical Changes of
Organic Compounds in Chlorinated Water. XIX. Production of Alkylpolychlorinated
Phenoxyphenols (Predioxins) by Aqueous Chlorination of Alkylphenols, Japanese
Journal of Toxicology and Environmental Health 39, 1, 20-28.
http://dx.doi.org/10.1248/jhs1956.39.20
4. Onodera, S., Takahashi, T., Takemoto, S., Fujiyama, T., Tai, C. and Oh-i,
T., (2003), Formation of polyhalogenated 4 methylphenol dimers
(Br/Cl-predioxins) during aqueous chlorination of 4 methylphenol in the
presence of bromide ion. Organohalogen Compounds, 63, 199-202.
5. Onodera, S., Hayashi, T., Fujiyama, T, Fujiwara, M., Oh-i, T., Mori, Y., Kuwahara,
M., Ezoe, Y., Nakajima, D. and Goto, S. J., (2006), TLC Fractionation and
Characterization of Ames Mutagenic Substances in Chlorine-treated
4-methylphenol Solution in the Presence of Bromide Ion, Journal of
Environmental Chemistry, 16, 2, 229-237.
http://dx.doi.org/10.5985/jec.16.229
6. Toprakkaya, D., Orhan, M., Gunesoglu, C. and Ozakin, C., (2005), Effects of
Environmental Conditions on the Antibacterial Activity of the Treated Cotton
Knits, AATCC Review, 5, 3, 25-28.
7. Orhan, M., Kut D., and Gunesoglu, C., (2007), Use of triclosan as
antibacterial agent in textiles, Indian Journal of Fibre and Textile Research,
32, 1, 114-118.
8. Orhan, M., Kut D., and Gunesoglu, C., (2009), Improving the antibacterial
activity of cotton fabrics finished with triclosan by the use of
1,2,3,4-butanetetracarboxylic acid and citric acid, Journal of Applied Polymer
Science, 111, 3, 1344-1352
http://dx.doi.org/10.1002/app.25083
9. Kuo-Yann Lai, (2005), Liquid detergents, Volume 129 of Surfactant science
series, 689 pages, CRC Press, ISBN 0824758358, 9780824758356
10. Donelli I., Freddi G., Nierstrasz VA., Taddei P., (2010), Surface structure
and properties of poly-(ethylene terephthalate) hydrolyzed by alkali and
cutinase, Polymer Degradation and Stability, 95, 9, 1542-1550.
http://dx.doi.org/10.1016/j.polymdegradstab.2010.06.011
11. Roberts J.D., Caserio M.C., (1977), Basic Principles of Organic Chemistry
2nd ed, Wiley.
12. Roberts J.D., Webster F.X. (1997), Spectrometric Identification of Organic
Compounds, Wiley
13. Coates J., (2000), Interpretation of Infrared Spectra, A Practical
Approach, Wiley
References
1.
Gärditz, C., (2007), Organische Leuchtdioden für Beleuchtungszwecke,
perspektivenverlag, Erlangen-Nürnberg
2. Roberts A., Stieler W., (2010), Der Schein der Moleküle, Technology Review,
06/2010, Page 68-69
3. DIN EN 6033 04.96, (1996), Bestimmung der interlaminaren
Energiefreisetzungsrate, Mode I – GIC
References
1. Ujević
D., Hrastinski M., DragÄević Z., Szirovicza L., (2006), Eksperimentalno
utvrđivanje tjelesnih mjera u okviru STIRP-a HAS, chapter in book Hrvatski
antropometrijski sustav, University of Zagreb, Faculty of Textile Technology,
Zagreb.
2. Ujević D., Rogale D., et al., (2006), Hrvatski antropometrijski sustav –
Podloga za nove hrvatske norme za veliÄinu odjeće i obuće, Tekstilno-tehnoloÅ¡ki
fakultet SveuÄiliÅ¡ta u Zagrebu, Zagreb.
3. Ashdown S.P., (2007), Sizing in Clothing, Developing Effective Sizing
Systems for Ready-To-wear Clothing, The Textile Institute, Munchester, England.
4. Ujević D., Hrastinski M., (2010), Contribution to the support data for new
Croatian standards for gament and footwear sizes and their designations,
chapter in book Theorethical Aspects and Application of Croatian Anthropmetrics
System, University of Zagreb, Faculty of Textile Technology, Zagreb, Croatia.
5. Ujević D., Petrak S., et al., (2007), Conventional and computer-controlled
methods in anthropometry under consideration, Proceedings of 7th International
Scientific Conference on Production Engineering DEVELOPMENT AND MODERNIZATION
OF PRODUCTION, RIM 2007, University of Bihac, Faculty of Technical Engineering,
Bihac, Bosnia and Herzegovina.
6. Ujevic D. et al., (2010), Comparison of conventional and computerised human
body measurement methods, Proceedings of 5th International Textile, Clothing
& Design Conference - Magic World of Textiles, pp. 523-528, October 03rd to
06th 2010, Dubrovnik, Croatia, Faculty of Textile Technology, University of
Zagreb, Zagreb, Croatia.
7. Youngsook C., et al., (2005), An interactive body model for individual
pattern making, International Journal of Clothing Science and Technology, 17:
91-99.
http://dx.doi.org/10.1108/09556220510581236
8. Petrak, S., Mahnic, M., Rogale, D., Ujević, D. (2011), Computer Design of
Textile and Clothing Collection-Assumption of Contemporary Remote Business,
Book of Proceedings of 11th World Textile Conference AUTEX 2011, pp. 1162-1168,
June 8th to 10th 2011, Mulhouse, France; Ecole Nationale Superieure d
Ingenieurs Sud-Alace, Mulhouse, France.
References
1. Chong
CL, Li SQ and Yeung KW., (1992), An objective method for the assessment of
levelness of dyed materials, Journal of the Society of Dyers and Colourists,
108, 12, 528-530.
http://dx.doi.org/10.1111/j.1478-4408.1992.tb01405.x
2. Yang Y and Li S., (1993), Instrumental measurement of the levelness of
textile coloration, Textile Chemist and Colorist, 25, 75-78.
3. Osman EM, El-Ebissy AA and Michaell MN., (2009), Characterization and
Evaluation of the Levelness Parameters of Natural Dyes on Natural Fabrics,
Research Journal of Textile and Apparel, 13, 61-68.
4. Günay M., (2009), Determination of dyeing levelness using surface
irregularity function, Color Research & Application, 34, 4, 285-290.
http://dx.doi.org/10.1002/col.20502
References
1.
Bioplastic Magazine, (2006), 1, 5
2. Ajioka M., Enomoto K., Suzuki K., Yamaguchi A., (1995), The basic properties
of poly(lactic acid) produced by the direct condensation polymerization of
lactic acid, Journal of Environmental Polymer Degradation, 3, 4, 225-234.
http://dx.doi.org/10.1007/BF02068677
3. Vink E. T. H., Rabago K. R., Glassner D. A., Gruber P. R., (2003),
Applications of life cycle assessment to NatureWorksâ„¢ polylactide (PLA)
production, Polymer Degradation and Stability, 80, 3, 403-419.
http://dx.doi.org/10.1016/S0141-3910(02)00372-5
4. Adanur S., (1995), Wellington Sears Handbook Of Indsutrial Textiles,
Technomic Pub., Basel, p.348, ISBN 1-56676-340-1.