Archive
Year | 2016 (Volume:23) |
Issue | 104 |
Pages | 238-296 |
Cover Page | Cover Page |
Articles
1 | Investigation of Performance Properties of Knitted Fabrics Produced from Splittable Microfilament Yarns DOI: 10.7216/1300759920162310401 Authors : Hatice Kübra KAYNAK, Halil İbrahim ÇELİK Article Detail | Abstract | Full Text | References |
2 | Automatic Inspection of the Warp-Weft Density Using Image Processing Techniques DOI: 10.7216/1300759920162310402 Authors : Erdoğan ALDEMİR, Hakan ÖZDEMİR, Selçuk KILINÇ Article Detail | Abstract | Full Text | References |
3 | Effects of Home Type Washing and Drying Processes on Thickness and Air Permeability Features of Denim Viewed Knitted Fabrics DOI: 10.7216/1300759920162310403 Authors : Deniz Mutlu ALA, Gamze Gülşen BAKICI Article Detail | Abstract | Full Text | References |
4 | A Study on Effects of Model and Marker Plan Differences on Fabric Productivity: Case of Bathrobe. DOI: 10.7216/1300759920162310404 Authors : Emine UTKUN Article Detail | Abstract | Full Text | References |
5 | Effect of Air Gaps on Protective Performance of Thermal Protective Clothing DOI: 10.7216/1300759920162310405 Authors : Hande Gül ATASAĞUN Article Detail | Abstract | Full Text | References |
6 | Improving Indoor Air Quality with Textile Materials DOI: 10.7216/1300759920162310406 Authors : Duygu GAZİOĞLU RÜZGAR, Şule ALTUN Article Detail | Abstract | Full Text | References |
References
1. Kaynak, H.K., Babaarslan, O., (2010), Investigation of the effects of filament fineness on the performance properties of microfiber knitted sportswear fabrics, 4th International Technical Textiles Congress, pp.51-52, May 16-18, ISBN 978 975 441 285 7, İstanbulTURKEY. 2. Kaynak, H.K., Babaarslan, O., (2012), Polyester Microfilament Woven Fabrics, Woven Fabrics, Prof. Han-Yong Jeon (Ed.), ISBN: 978-953-51-0607-4, InTech, Available from: http://www. intechopen.com/books/woven-fabrics/polyester-microfilamentwoven-fabrics. 3. Mukhopadhyay, S., Ramakrishnan, G., (2008), Microfibres, Textile Progress, 40:1, 1-86 Available from: http://dx.doi.org/ 10.1080/00405160801942585. https://doi.org/10.1080/00405160801942585 4. Srinavasan, J., Ramakrishnan, G., Mukhopadhyay, S., Manoharan, S., (2007), A study of knitted fabrics from polyester microdenier fibres, Journal of the Textile Institute, Vol.98, p.31-35. https://doi.org/10.1533/joti.2005.0180 5. Jun, Y., Kang, Y.K., Park, C., Choi, C., (2002), Evaluation of textile performance of soccer wear, Textile Asia, Vol.33, p.43–44. 6. NahlaAbd El-Mohsen, H.A., GhadaAbd Alla, E.K., (2012), Effect of Number of Fibers per Yarn Cross-section on Moisture Vapour Transport in Knitted Garment, Journal of American Science, Vol.8, p.370-378. 7. Sampath, M.B., Senthilkumar, M., Nalankilli, G., (2011), Effect of Filament Fineness on Comfort Characteristics of Moisture Management Finished Polyester Knitted Fabrics, Journal of Industrial Textiles, Vol. 41, p.160–173. https://doi.org/10.1177/1528083711400774 8. Kaynak, H.K., Babaarslan, O., (2016), Effects of Filament Linear Density on the Comfort Related Properties of Polyester Knitted Fabrics. FIBRES & TEXTILES in Eastern Europe, Vol. 24, 1(115): 89-94. https://doi.org/10.5604/12303666.1172091 9. Park, M.J., Kim, S.H., Kim, S.J., Jeong, S.H., Jaung, J.Y., (2001), Effect of Splitting and Finishing on Absorption/Adsorption Properties of Split Polyester Microfiber Fabrics, Textile Research Journal; vol. 71,no. 9, 831-840. https://doi.org/10.1177/004051750107100913 10. Lee, J.H., Kim, S.H., Lee, K.J., Lim, D.Y., Jeon, H.Y.,(2004), Determining the Absorption Properties of Split-Type Microfiber Fabrics by Measuring the Change in Color Depth, Textile Research Journal, vol. 74, no. 3, 271-278. https://doi.org/10.1177/004051750407400315 11. Kim, S.H., Kim, S.J., Oh, K.W., (2003), Water Absorption and Mechanical Properties of Pile-Knit Fabrics Based on Conjugate N/P Microfibers, Textile Research Journal, vol. 73, no. 6, 489-495. https://doi.org/10.1177/004051750307300605 12. Zhimin, L., Xiaoming, Q., (2010), Discussion on the Splitting Technique of Segmented Type Bicomponent Spunbonded Nonwovens, Proceedings of the 2010 International Conference on Information Technology and Scientific Management. 50-52, vol.1, 20 Aralık, Çin. İnternet: http://file.scirp.org/pdf/20-1.15.pdf. 13. TS EN ISO 139: 2008 Textiles-Standard atmospheres for conditioning and testing. 14. TS EN 12127: 1999 Textiles- Fabrics - Determination of mass per unit area using small samples. 15. TS 7128 EN ISO 5048:1998-Textiles - Determination of thickness of textiles and textile products 16. TS EN 14971:2006 Textiles - Knitted fabrics - Determination of number of stitches per unit length and unit area. 17. TS EN 14970:2006 Textiles – Knitted fabrics - Determination of stitch length and yarn linear density in weft knitted fabrics. 18. TS 391 EN ISO 9237:1999Textiles-Determination of permeability of fabrics to air. 19. TS EN ISO 13938-2:2003 Textiles- Bursting properties of fabrics- Part 2: Pneumatic method for determination of bursting strength and bursting distension. 20. BS 7209:1990 Specification for water vapour permeable apparel fabrics. 21. Das, B., Das, A., Kothari, V.K., Fanguiero, R., Araújo, M., (2007), Moisture transmission through textiles Part I: Processes involved in moisture transmission and the factors at play. AUTEX Research Journal.7, 100-110. 22. Collier, B.J., Epps, H.H., (1998), Textile testing and analysis, Upper Saddle River, New Jersey. 23. Tortora, P.G., Collier, B.J., (1997), Understanding textiles. New Jersey.
References
1. Lin, J. J. (2002), Applying a Co-occurrence Matrix to Automatic Inspection of Weaving Density for Woven Fabrics, Textile Research Journal, 72, 486-490. https://doi.org/10.1177/004051750207200604 2. Techniková, L. ve Tunák, M. (2013), Weaving Density Evaluation with the Aid of Image Analysis, Fibres & Textiles in Eastern Europe, 21(2), 74-79. 3. Sari-sarraf, H. (1996), On-line Optical Measurement and Monitoring of Yarn Density in Woven Fabrics, Photonics China '96 Symposium on Automated Optical Inspection for Industry: Theory, Technology, and Application. Beijing, China, 444-452. 4. MaroÅ¡, T. ve AleÅ¡, L. (2004), Applying Spectral Analysis to Automatic Inspection of Weaving Density, 16th International Conference Structure and Structural Mechanics of Textiles. Liberec, Çek Cumhuriyeti. 5. Pan R., Gao W., Li Z., Gou J., Zhang J., Zhu D. (2015), Measuring Thread Densities of Woven Fabric Using the Fourier Transform, FIBRES & TEXTILES in Eastern Europe, 23, 1(109), 35-40. 6. Lachkar, A., Gadi T., Benslimane, R., D'Orazio, L., Martuscelli, E. (2003), Textile Woven-fabric Recognition by Using Fourier Image-analysis Techniques: Part I: A Fully Automatic Approach for Crossedpoints Detection, The Journal of The Textile Institute, 94(3-4), 194-201. https://doi.org/10.1080/00405000308630608 7. Pan, R., Gao W., Liu, J., Wang, H., Qian, X. (2011), Automatic Inspection of Double-system-mélange Yarn-dyed Fabric Density with Color-gradient Image, Fibers and Polymers, 12(1), 127-131. https://doi.org/10.1007/s12221-011-0127-z 8. Li, L.Q., Chen, X. ve Huang, X.B. (2005), Automatic Inspection of Weaving Density for Woven Fabrics Using Adaptive Wavelets, Journal of Donghua University, 31, 6365. 9. Chan, C. Pang, G. (2000), Fabric Defect Detection by Fourier Analysis, IEEE Transactions on Industry Applications, 36(5), 1267-1276. https://doi.org/10.1109/28.871274 10. Lachkar, A., Benslimane, R., D'Orazio, L., Martuscelli, E. (2005) Textile Woven Fabric Recognition Using Fourier Image Analysis Techniques: Part II – Texture Analysis for Crossed-States Detection, The Journal of The Textile Institute, 96(3), 179-183. https://doi.org/10.1533/joti.2004.0069 11. Feng, Y.L. ve Li, R.Q. (2001), Automatic Measurement of Weave Count with Wavelet Transfer, Journal of Textile Research, 22, 30-31. 12. Jing, J., Liu S. (2014) Automatic Density Detection of Woven Fabrics via Wavelet Transform, Journal of Information and Computational Science, 11(8), 2559-2568. https://doi.org/10.12733/jics20103491 13. Yili F., et al (2001), Automatic Measurement of Weave Count with Wavelet Transfer, Journal of Textile Research, 2001-02. 22(2), 94-95. 14. Pan, R., Gao, W., Liu, J., Wang, H. ve Zhang, X. (2010), Automatic Detection of Structure Parameters of Yarn-dyed Fabric, Textile Research Journal, 80(17), 1819-1932. https://doi.org/10.1177/0040517510369411 15. Pan, R., Gao, W., Liu, J. ve Wang, H. (2010), Automatic Inspection of Woven Fabric Density of Solid Colour Fabric Density by the Hough Transform, FIBRES & TEXTILES in Eastern Europe, 18(4), 46-51. 16. Yıldırım, B. ve Baser, G. (2009), Image Processing Approach for Weft Density Measurement on the Loom,16th International Conference Structure and Structural Mechanics of Textiles. 1-6, Aralık 2009, Liberec, Çek Cumhuriyeti. 17. Zhang, J., Xin2, B., Wu X. (2013), Review of Fabric Identification Based on Image Analysis Technology, Textiles and Light Industrial Science and Technology (TLIST), 2(3), 120-130. 18. Pan, R.R. ve Gao, W.D. (2008), High-precision Identification of Woven Fabric Density Via Image Processing, Journal of Textile Research, 29, 128-131. 19. Xie, L.Q. ve Yu, W.D. (2008), Applied Technique of Automatic Measurement of Warp and Weft Densities in Fabrics: 1. Method of Measurement, Journal of Textile Research, 29, 26-30. 20. Ohta, K., Nonaka, Y. ve Miyawaki, F. (1995), Automatic Analyzing of a Weaving Design with the Spatial Frequency Components, Image Analysis Applications and Computer Graphics, 1024, 516-51. https://doi.org/10.1007/3-540-60697-1_152 21. Gao, W.D., Liu, J.H., Xu, B.J., Di, W. ve Xue, W. (2002), Automatic Identification of Warps Arrangement Parameters in Fabric, Cotton Textile Technology, 30, 31-34. 22. Shady, E., Qashqary, K., Hassan, M. ve Militky, J. (2012), Image Processing Based Method Evaluating Fabric Structure Characteristics, Fibres & Textiles in Eastern Europe, 20, 8690. 23. Jeong, Y., Jang J. (2005), Applying Image Analysis to Automatic Inspection of Fabric Density for Woven Fabrics, Fibers and Polymers, 6(2), 156-161. https://doi.org/10.1007/BF02875608 24. Yıldırım B. (2013), Determination of Optimum Filter Size for Detecting Yarn Boundaries, Fibers and Polymers, 14(10), 1739-1747. https://doi.org/10.1007/s12221-013-1739-2 25. Lim, Jae S. (1990), Two-Dimensional Signal and Image Processing, Prentice Hall, Englewood Cliffs, New Jersey. 26. Raheja, L., J., Ajay, B., Chaudhary (2013), A. Real Time Fabric Defect Detection System on an Embedded DSP Platform, Optik: International Journal for Light and Electron Optics, Elsevier, 124(21), 5280-5284. https://doi.org/10.1016/j.ijleo.2013.03.038 27. Zhou, J., Li, G., Wan X., Wang F. (2015), A Real-Time Computer Vision-Based Platform for Fabric Inspection Part 2: Platform Design and Real Time Implementation, The Journal of The Textile Institute, 107(2), 264-272. https://doi.org/10.1080/00405000.2015.1025559
References
1. Mezarciöz, S., (2010), Farkli Üretim Teknikleriyle Eğrilmiş İpliklerden Örülen Kumaşlarin Belirli Özelliklerinin İncelenmesi ve İstatistiksel Modellenmesi, Çukurova Üniversitesi Fen Bilimleri Enstitüsü Tekstil Mühendisliği Anabilim Dalı-Doktora Tezi, Adana 2. Değirmenci, Z., (2013), İndigo Boyalı Pamuk Ipliğinden Örme Denim Kumaş Özelliklerinin Araştırılması, Çukurova Üniversitesi Fen Bilimleri Enstitüsü Tekstil Mühendisliği Anabilim DalıDoktora Tezi, Adana 3. Değirmenci, Z., Çelik, N., (2013), Örme Denim Kumaşların Tercih Edilmesi Üzerine Bir Araştırma, Tekstil Teknolojileri Elektronik Dergisi, 7(2),16-26 4. Gokerneshan, N., Kumar, M.K., Devan, P., Dinesh, K., Kumar, A.P., Saranya, G., Subhash, K., (2010), Denim-Like Effect In Knitted Fabrics, The Indian Textile Journal, 120(5), p42 5. Shin, J.C., (2004), Knitted Fabric For Producing Indigo-Dyed Cotton Denim Jeans, United States Patent, n:0172982 6. Can, Y., Akaydin, M., (2012), Yıkama İşleminin Pamuklu Bezayağı Kumaşların Boncuklanma Özelliğine Etkileri, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 19(4), 170-173 7. Tokat, A.İ., Kayfeci, M., Çetinkaya, K., (2013), Askı Tipi Çamaşır Kurutma Makinesi Tasarımı, Prototipi ve Test Edilmesi, Makine Teknolojileri Elektronik Dergisi, 10(3), 7-13 8. Anand, S.C., Brown, K.S.M., Higgins, L.G., Holmes, D.A., Hall, M.E., Conrad, D., (2002), Effect of Laundering on the Dimesional Stability and Distortion of Knitted Fabrics, Autex Research Journal, 2(2), 85-100 9. Mikucioniene, D., Laureckiene, G., (2009), The Influence of Drying Conditions on Dimesional Stability of Cotton Weft Knitted Fabrics, Materials Science, 15(1), 64-68 10. Kotb, N.A., (2012), Changes in Knitted Cotton/Polyester Fabric Characteristics Due to Domestic Laundering, Journal of American Science, 8(5), 677-682 11. Kan, C.W., Yuen, C.W.M., (2009), Evaluation of the Performance of Stretch Denim Fabric Under the Effect of Repeated Home Launderin Processes, International Journal of Fashion Design, 2(23), 71-79 https://doi.org/10.1080/17543260903302329 12. Shurkian, O., Amirbayat, J., GONG, R.H., (2002), Effects of Repeated Laundering and Crease-Resistant Treatment on Fabric Properties, Journal of Textile Engineering, 48(1), 1-4 https://doi.org/10.4188/jte.48.1 13. Arslan, B., (2006), Ev Tipi Yıkamanın Çeşitli İplik ve Örgü Tipinden Mamul Viskon Kumaşlar Üzerindeki Etkileri, İstanbul Teknik Üniversitesi Fen Bilimleri Enstitüsü Tekstil Mühendisliği Anabilim Dalı-Yüksek Lisans Tezi, İstanbul 14. Marmarali, A., Özdil, N., Kretzschmar, S.D., Oğlakçioğlu, N.D., (2006), Giysilerde Isıl Konforu Etkileyen Parametreler, Tekstil ve Konfeksiyon, 4/2006, 241-246 15. Mavruz, S., Oğulata, R.T., (2009), Pamuklu Örme Kumaşlarda Hava Geçirgenliğinin İncelenmesi ve İstatistiksel Olarak Tahminlenmesi, Tekstil ve Konfeksiyon, 1/2009, 29-38 16. TS EN 14971, (2006). Tekstil- Örülmüş kumaşlar- Birim uzunluk ve birim alan başına örgü ilmeği sayısının tayini. 17. TS 251, (2008). Dokunmuş kumaşlar - Birim uzunluk ve birim alan kütlesinin tayini. 18. TS 7128 EN ISO 5084, (1998). Tekstil-Tekstil ve tekstil mamullerinin kalınlık tayini. 19. TS 391 EN ISO 9237, (1999). Tekstil -Kumaşlarda hava geçirgenliğinin tayini.
References
1. Blecha, C.J., Ammons, J.C., Schutte A. and Smith, T., (1998), Cut order planning for apparel manufacturing, IEE Transactions, 30(1), 79-90. https://doi.org/10.1080/07408179808966439 2. Erdoğan, M.Ç., (1999), İç piyasa klasik erkek gömleği üretiminde ideal kumaş eninin saptanması, Tekstil ve Konfeksiyon, 9(5), 397402. 3. Kansoy, O., Erdoğan M.Ç., ve Öndoğan Z., (2005), Model özelliklerinin kesim süresine etkisi, Tekstil ve Konfeksiyon, 15(3), 172-177. 4. Kwong, C.K., Mok, P.Y.and Wong, W.K., (2006), Determination of fault-tolerant fabric-cutting schedules in a just-in-time apparel manufacturing environment, International Journal of Production Research, 44(21), 4465-4490. https://doi.org/10.1080/00207540600597047 5. Dirgar, E., Kansoy, O. and Kırtay, E., (2008), The effect of tilting patterns off-grain on fabric usage amount, Journal of Textile& Apparel,18(2),130-134. 6. Wong, W.K. and Leung, S.Y.S., (2008), Genetic optimization of fabric utilization in apparel manufacturing, Int. J. Production Economics, 114, 376-386. https://doi.org/10.1016/j.ijpe.2008.02.012 7. Yeşilpınar, S. and Aytaç, V., (2009), An approach aimed at fabric consumption in shirt production,Textile Research Journal, 79(5), 461-467. https://doi.org/10.1177/0040517508090491 8. Wong, W.K. and Leung S.Y.S., (2009), A hybrid planning process for improving fabric utilization, Textile Research Journal, 79(18), 1680-1695. https://doi.org/10.1177/0040517509102225 9. Paşayev, N., (2010), Investigating the effects of production planning on fabric costs in confection production, Journal of Textile&Apparel, 20(3), 262-270. 10. Tunç, M., (2010), Havlu ve Bornoz Üretim Sürecinin İncelenmesi, Yüksek Lisans Tezi, Çukurova Üniversitesi Fen Bilimleri Enstitüsü, Adana, 125 sayfa. 11. Utkun, E. and Öndoğan, Z., (2012), Determination of the ideal fabric width of the classical women's blouse models made from Buldan cloth, Journal of Textile&Apparel, 22(3), 258-267. 12. Baykal, P.D., ve Göçer, E., (2012), Konfeksiyonda Kumaş ve Model Çeşitliliğinin Üretimde Kalite ve Verimliliğe Etkisi, Tekstil ve Mühendis, 19(87), 15-23. https://doi.org/10.7216/130075992012198703 13. Oral, O., Erdogan, E. and Dirgar, E., (2013), The Relationship between model types and related parameters, IndustriaTextila, 64(4), 210-216. 14. Oral, O., (2013), The effect of men's shirt measure change on fabric usage amount, Journal of Textile&Apparel, 23(3), 280-285.
References
1. Rossi, R. M., (2005), Interactions between Protection and Thermal Comfort, Textiles for Protection (ed. Scott, R.), Woodhead Publishing Limited, Cambridge. 2. Ghazy, A., ve Bergstrom, D. J., (2011). Influence of The Air Gap Between Protective Clothing and Skin on Clothing Performance During Flash Fire Exposure, Heat And Mass Transfer, 47(10), 1275-1288. https://doi.org/10.1007/s00231-011-0791-y 3. Wang, Y. Y., Lu, Y. H., Li, J., ve Pan, J. H., (2012), Effects of Air Gap Entrapped in Multilayer Fabrics and Moisture on Thermal Protective Performance, Fibers and Polymers, 13(5), 647-652. https://doi.org/10.1007/s12221-012-0647-1 4. Daanen, H., Hatcher, K., ve Havenith, G., (2005), Determination of Clothing Microclimate Volume, Elsevier Ergonomics Book Series, 3, 361-365. https://doi.org/10.1016/S1572-347X(05)80057-6 5. Daannen, H., ve Reffeltrath, P., (2007), Function, Fit and Sizing, Sizing in Clothing (ed. Ashdown, S.), Woodhead Publishing Limited, Cambridge. 6. Zhang, Z., ve Li, J., (2011), Volume of Air Gaps under Clothing and Its Related Thermal Effects, Journal of Fiber Bioengineering and Informatics, 4(2), 137-144. https://doi.org/10.3993/jfbi06201104 7. Frackiewicz-Kaczmarek, J., Psikuta, A., Bueno, M. A., ve Rossi, R. M., (2015). Air Gap Thickness and Contact Area in Undershirts with Various Moisture Contents: Influence of Garment Fit, Fabric Structure and Fiber Composition, Textile Research Journal, 85(20), 2196-2207. https://doi.org/10.1177/0040517514551458 8. Li, X., Wang, Y., ve Lu, Y., (2011), Effects of Body Postures on Clothing Air Gap in Protective Clothing, Journal of Fiber Bioengineering & Informatics, 4(3), 277-283. https://doi.org/10.3993/jfbi09201107 9. Lotens, W. A., ve Havenith, G., (1991), Calculation of Clothing Insulation and Vapour Resistance, Ergonomics, 34(2), 233-254. https://doi.org/10.1080/00140139108967309 10. Song, G., Barker, R. L., Hamouda, H., Kuznetsov, A. V., Chitrphiromsri, P., ve Grimes, R. V., (2004), Modeling the Thermal Protective Performance of Heat Resistant Garments in Flash Fire Exposures, Textile Research Journal, 74(12), 1033-1040. https://doi.org/10.1177/004051750407401201 11. Zhang, Z., Wang, Y., ve Li, J., (2010), Mathematical Simulation and Experimental Measurement of Clothing Surface Temperature under Different Sized Air Gaps, Fibers and Polymers, 11(6), 911-916. https://doi.org/10.1007/s12221-010-0911-1 12. Mah, T., ve Song, G., (2010a), Investigation of the Contribution of Garment Design to Thermal Protection. Part 1: Characterizing Air Gaps Using Three-Dimensional Body Scanning for Women's Protective Clothing. Textile Research Journal, 80(13), 1317-1329. https://doi.org/10.1177/0040517509358795 13. Zhang, Z. H., Wang, Y., ve Li, J., (2011), Model for Predicting the Effect of an Air Gap on The Heat Transfer of a Clothed Human Body, Fibres & Textiles in Eastern Europe, 4, 105-110. 14. Psikuta, A., Frackiewicz-Kaczmarek, J., Frydrych, I. K., ve Rossi, R. M., (2012). Quantitative Evaluation of Air Gap Thickness and Contact Area between Body and Garment, Textile Research Journal, 82(14), 1405-1413. https://doi.org/10.1177/0040517512436823 15. Mert, E., Psikuta, A., Bueno, M. A., ve Rossi, R. M., (2016), The Effect of Body Postures on the Distribution of Air Gap Thickness and Contact Area, International Journal of Biometeorology, doi:10.1007/s00484-016-1217-9 https://doi.org/10.1007/s00484-016-1217-9 16. Yu, M., Wang, Y., Wang, Y., ve Li, J., (2013), Correlation between Clothing Air Gap Space and Fabric Mechanical Properties, Journal of the Textile Institute, 104(1), 67-77. https://doi.org/10.1080/00405000.2012.693274 17. Song, G., (2007), Clothing Air Gap Layers and Thermal Protective Performance in Single Layer Garment, Journal of Industrial Textiles, 36(3), 193-205. https://doi.org/10.1177/1528083707069506 18. Zhang, Z., Li, J., ve Wang, Y., (2015), Improving Garment Thermal Insulation Property By Combining Two Non-Contact Measuring Tools, Indian Journal of Fibre & Textile Research, 40(4), 392-398. 19. Mert, E., Psikuta, A., Bueno, M. A., ve Rossi, R. M., (2015), Effect of Heterogenous and Homogenous Air Gaps on Dry Heat Loss through the Garment. International Journal Of Biometeorology, 59(11), 1701-1710. https://doi.org/10.1007/s00484-015-0978-x 20. Kim, I. Y., Lee, C., Li, P., Corner, B. D., ve Paquette, S., (2002), Investigation of Air Gaps Entrapped in Protective Clothing Systems, Fire and Materials, 26(3), 121-126. https://doi.org/10.1002/fam.790 21. Li, J., Zhang, Z., ve Wang, Y., (2013), The Relationship between Air Gap Sizes and Clothing Heat Transfer Performance, The Journal of The Textile Institute, 104(12), 1327-1336. https://doi.org/10.1080/00405000.2013.802080 22. Frackiewicz-Kaczmarek, J., Psikuta, A., Bueno, M. A., ve Rossi, R. M., (2015b). Effect of Garment Properties on Air Gap Thickness and The Contact Area Distribution, Textile Research Journal, 85(18), 1907-1918. https://doi.org/10.1177/0040517514559582 23. Parsons, K. C., Havenith, G., Holmer, I., Nilsson, H., ve Malchaire, J., (1999). The Effects of Wind and Human Movement on the Heat and Vapour Transfer Properties of Clothing, Annals of Occupational Hygiene, 43(5), 347-352. https://doi.org/10.1093/annhyg/43.5.347 24. Choi, J., Kim, H., Kang, B., Nama, Y., Chung, M. K., ve Jung, H., (2014), Analysis of Clothing Air Gap in a Protective Suit According to the Body Postures, Journal of Fiber Bioengineering and Informatics, 7(4), 573-581. 25. Voelker, C., Hoffmann, S., Kornadt, O., Arens, E., Zhang, H., ve Huizenga, C. (2009), Heat and Moisture Transfer through Clothing, 11th International IBPSA Conference, Glasgow. 26. Talukdar, P., Das, A., ve Alagurisamy, R., (2016), Heat and Mass Transfer through Thermal Protective Clothing – A Review, International Journal of Thermal Sciences, 106, 32-56. https://doi.org/10.1016/j.ijthermalsci.2016.03.006 27. Lee, Y., Hong, K., ve Hong, S. A., (2007), 3D Quantification of Microclimate Volume in Layered Clothing for the Prediction of Clothing Insulation, Applied Ergonomics, 38(3), 349-355. 28. Torvi, D. A., (1996), Heat Transfer in Thin Fibrous Materials under High Heat Flux Conditions, Doktora Tezi, Makine Mühendisliği Bölümü, Alberta Üniversitesi, Alberta. 29. Chen, Y. S., Fan, J., Qian, X., ve Zhang, W., (2004), Effect of Garment Fit on Thermal Insulation And Evaporative Resistance, Textile Research Journal, 74(8), 742-748. https://doi.org/10.1177/004051750407400814 30. Horrocks, R., (2005), Thermal (heat and fire) Protection, Textiles for Protection (ed. Scott, R.), Woodhead Publishing Limited, Cambridge. 31. Ömeroğulları, Z., ve Kut, D., (2012), Tekstilde Güç Tutuşurluk, Uludağ Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 17(1), 27-41. 32. Song, G. W., ve Lu, Y. H., (2013), Flame Resistant Textiles for Structural and Proximity Fire Fighting, Handbook of Fire Resistant Textiles, Woodhead Publishing Limited, Cambridge. 33. Song, G., Paskaluk, S., Sati, R., Crown, E. M., Dale, J. D., ve Ackerman, M., (2010), Thermal Protective Performance of Protective Clothing Used for Low Radiant Heat Protection, Textile Research Journal, 81(3), 311-323. https://doi.org/10.1177/0040517510380108 34. Bulgun, E., ve Yılmaz, M., (2010), İtfaiye Elbiseleri Tasarımında Son Gelişmeler, Tekstil ve Mühendis, 77, 20-28. 35. Behnke, W. P., (1977), Thermal Protective Performance Test for Clothing, Fire Technology, 13(1), 6-12. https://doi.org/10.1007/BF02338881 36. Lawson, J. R., ve Twilley, W. H., (1999), Development of an Apparatus for Measuring the Thermal Performance of Fire Fighters' Protective Clothing, US Department of Commerce, Technology Administration, National Institute of Standards and Technology, Gaithersburg. 37. Barker, R. L., Guerth-Schacher, C., Grimes, R. V., ve Hamouda, H., (2006), Effects of Moisture on the Thermal Protective Performance of Firefighter Protective Clothing in Low-Level Radiant Heat Exposures, Textile Research Journal, 76(1), 27-31. https://doi.org/10.1177/0040517506053947 38. Sawcyn, C. M., ve Torvi, D. A., (2009), Improving Heat Transfer Models of Air Gaps in Bench Top Tests of Thermal Protective Fabrics, Textile Research Journal, 79(7), 632-644. https://doi.org/10.1177/0040517508093415 39. Su, Y., Wang, Y., ve Li, J., (2016), Evaluation Method for Thermal Protection of Firefighters' Clothing in High-Temperature and High-Humidity Condition: A Review, International Journal of Clothing Science and Technology, 28(4), 429-448. 40. Wang, M., Li, X., ve Li, J., (2015), Correlation of Bench Scale and Manikin Testing of Fire Protective Clothing with Thermal Shrinkage Effect Considered, Fibers and Polymers, 16(6), 1370-1377. https://doi.org/10.1007/s12221-015-1370-5 41. Barker, R. L., (2005), A Review of Gaps and Limitations in Test Methods for First Responder Protective Clothing and Equipment, Final Raporu, National Institute for Occupational Safety and Health. 42. Lee, C., Kim, I. Y., ve Wood, A., (2002), Investigation and Correlation of Manikin and Bench-Scale Fire Testing of Clothing Systems, Fire and Materials, 26(6), 269-278. https://doi.org/10.1002/fam.808 43. Li, J., Lu, Y., ve Li, X., (2012), Effect of Relative Humidity Coupled With Air Gap on Heat Transfer of Flame-Resistant Fabrics Exposed to Flash Fires, Textile Research Journal, 82(12), 1235-1243. https://doi.org/10.1177/0040517512436830 44. Chitrphiromsri, P., ve Kuznetsov, A. V., (2005). Modeling Heat and Moisture Transport in Firefighter Protective Clothing during Flash Fire Exposure, Heat and Mass Transfer, 41(3), 206-215. 45. Song, G., Chitrphiromsri, P., ve Ding, D., (2008), Numerical Simulations of Heat and Moisture Transport in Thermal Protective Clothing under Flash Fire Conditions, International Journal of Occupational Safety and Ergonomics, 14(1), 89-106. https://doi.org/10.1080/10803548.2008.11076752 46. Ghazy, A., ve Bergstrom, D. J., (2010), Numerical Simulation of Transient Heat Transfer in a Protective Clothing System during a Flash Fire Exposure, Numerical Heat Transfer, Part A: Applications, 58(9), 702-724. https://doi.org/10.1080/10407782.2010.516691 47. Lee, Y. M., ve Barker, R. L., (1986), Effect of Moisture on the Thermal Protective Performance of Heat-Resistant Fabrics, Journal of Fire Sciences, 4(5), 315-331. https://doi.org/10.1177/073490418600400502 48. Keiser, C., Becker, C., ve Rossi, R. M., (2008), Moisture Transport and Absorption in Multilayer Protective Clothing Fabrics, Textile Research Journal, 78(7), 604-613. https://doi.org/10.1177/0040517507081309 49. Lu, Y., Li, J., Li, X., ve Song, G., (2013), The Effect of Air Gaps in Moist Protective Clothing on Protection from Heat and Flame, Journal of Fire Sciences, 31(2), 99-111. https://doi.org/10.1177/0734904112457342 50. He, H., Yu, Z. C., ve Song, G., (2016), The Effect of Moisture and Air Gap on the Thermal Protective Performance of Fabric Assemblies Used by Wildland Firefighters, The Journal of The Textile Institute, 107(8), 1030-1036. 51. Ghazy, A., (2014). Influence of Thermal Shrinkage on Protective Clothing Performance during Fire Exposure: Numerical Investigation, Mechanical Engineering Research, 4(2), 1-15. https://doi.org/10.5539/mer.v4n2p1 52. Li, X., Lu, Y., Zhai, L., Wang, M., Li, J., ve Wang, Y., (2015), Analyzing Thermal Shrinkage of Fire-Protective Clothing Exposed to Flash Fire, Fire Technology, 51(1), 195-211. https://doi.org/10.1007/s10694-013-0375-0 53. Song, G., Cao, W., ve Gholamreza, F., (2011), Analyzing Stored Thermal Energy and Thermal Protective Performance of Clothing, Textile Research Journal, 81(11), 1124-1138. https://doi.org/10.1177/0040517511398943 54. Mah, T., ve Song, G., (2010b), Investigation of the Contribution of Garment Design to Thermal Protection. Part 2: Instrumented Female Mannequin Flash-Fire Evaluation System. Textile Research Journal, 80(14), 1473-1487. https://doi.org/10.1177/0040517509358796 55. Fu, M., Weng, W., ve Yuan, H., (2014). Effects of Multiple Air Gaps on the Thermal Performance of Firefighter Protective Clothing under Low-Level Heat Exposure, Textile Research Journal, 84(9), 968-978. https://doi.org/10.1177/0040517513512403 56. Xin, L., Li, X., ve Li, J., (2014), A New Approach to Evaluate the Effect of Body Motion on Heat Transfer of Thermal Protective Clothing during Flash Fire Exposure, Fibers and Polymers, 15(10), 2225-2231. https://doi.org/10.1007/s12221-014-2225-1 57. Ghazy, A., ve Bergstrom, D. J., (2013). Numerical Simulation of the Influence of Fabric's Motion on Protective Clothing Performance during Flash Fire Exposure, Heat and Mass Transfer, 49(6), 775-788. https://doi.org/10.1007/s00231-013-1123-1
References
1. Brown, S.K., Sim, M.R., Abramson, M.J., Gray, C.N., (1994), Concentrations of Volatile Organic Compounds in Indoor Air-A Review, International Journal of Indoor Environment and Health, 4, 2, 123-134. https://doi.org/10.1111/j.1600-0668.1994.t01-2-00007.x 2. Yoo, J.Y., Park, C.J., Kim, K.Y., Son, Y.S., Kang, C.M., Wolfson, J.M., Jung, I.H., Lee, S.J., Koutrakis, P., (2015), Development of an Activated Carbon Filter to Remove NO2 and HONO in Indoor Air, Journal of Hazardous Materials, 289, 184–189. https://doi.org/10.1016/j.jhazmat.2015.02.038 3. Ohura, T., Amagai, T., Shen, X., Li, S., Zhang, P., Zhu, L., (2009), Comparative Study on Indoor Air Quality in Japan and China: Characteristic of Residential Indoor and Outdoor UOBs, Atmospheric Environment, 43, 40, 6352-6359. https://doi.org/10.1016/j.atmosenv.2009.09.022 4. Shaw, C.Y., Won, D., Reardon, J., (2005), Managing Volatile Organic Compounds and Indoor Air Quality in Office Buildings-An Engineering Approach, National Research Council Canada. 5. Uhde, E., Salthammer, T., (2007), Impact of Reaction Products from Building Materials and Furnishings on Indoor Air Quality-A Review of Recent Advances In Indoor Chemistry, Atmospheric Environment, 41, 15, 3111–3128. https://doi.org/10.1016/j.atmosenv.2006.05.082 6. Smith, K.R., Mehta, S., Feuz, M.M., (2004), Indoor Air Pollution from Household Use of Solid Fuels-Chapter 18, Comparative Quantification of Health Risks, World Health Organization, Switzerland. 7. Höppe, P., Martinac, I., (1998), Indoor Climate and Air QualityReview of Current and Future Topics in the Field of ISB Study Group 10, Int J Biometeorol, 42, 1, 1–7. 8. WHO European Centre for Environment and Health, Bonn Office, WHO Regional Office for Europe, (2010), WHO Guidelines for Indoor Air Quality: Selected Pollutants, WHO Regional Office for Europe, Denmark. 9. Ni, J.Q., Robarge, W.P., Xiao, C., Heber, A., (2012), Volatile Organic Compounds at Swine Facilities: A Critical Review, Chemosphere, 89, 7, 769-788. https://doi.org/10.1016/j.chemosphere.2012.04.061 10. Zhang, Y., Moa, J., Li, Y., Sundell, J., Wargocki, P., Zhang, J., Little, J., Corsi, R., Deng, Q., Leung, M., Fang, L., Chen, W., Li, J., Sun, Y., (2011), Can Commonly-Used Fan-Driven Air Cleaning Technologies Improve Indoor Air Quality? A Literature Review, Atmospheric Environment, 45, 26, 4329-4343. https://doi.org/10.1016/j.atmosenv.2011.05.041 11. Darçın, P., (2008), Yapı İçi Hava Kirliliğinin Giderilmesinde Doğal Havalandırma İlkeleri, Yüksek Lisans Tezi, Yıldız Teknik Üniversitesi, İstanbul. 12. Weschler C.J., (2001), Reactions Among Indoor Pollutants, The Scientific World Journal, 1, 443–457. https://doi.org/10.1100/tsw.2001.75 13. Weschler, C.J., 2009, Changes in Indoor Pollutants Since the 1950s, Atmospheric Environment, 43, 1, 153–169. https://doi.org/10.1016/j.atmosenv.2008.09.044 14. http://www.asid.org/NR/rdonlyres/F10243FD-287B-4994-87BE26ED36C06B51/0/TakeaBreath.pdf, Erişim Tarihi: 10 Ekim 2013. 15. Ni, J.-Q., Robarge, W.P., Xiao, C., Heber, A.J., (2012), Volatile Organic Compounds at Swine Facilities: A Critical Review, Chemosphere, 89, 7, 769-788. https://doi.org/10.1016/j.chemosphere.2012.04.061 16. Birgül, A., Cindoruk, S.S., Esen, F., Taşdemir,Y., (2013), Bursa Atmosferi'ndeki Yarı Uçucu Organik Bileşiklerin Konsantrasyon Seviyelerinin Zamansal ve Bölgesel Değişimi, Hava Kirliliği Araştırmaları Dergisi, 2, 4, 123–132. 17. Alyüz, B., Veli, S., (2006), İç Ortam Havasında Bulunan Uçucu Organik Bileşikler ve Sağlık Üzerine Etkileri, Trakya Univ J Sci, 7, 2, 109-116. 18. Ohura, T., Amagai, T., XueYou, S., Shuang, L., Ping, Z., Lizhong, Z., (2009), Comparative Study on Indoor Air Quality In Japan and China: Characteristic of Residential Indoor and Outdoor VOCs, Atmospheric Environment 43, 40, 6352-6359. https://doi.org/10.1016/j.atmosenv.2009.09.022 19. Çobanoğlu, N., Kiper N., (2006), Bina İçi Solunan Havada Tehlikeler, Çocuk Sağlığı ve Hastalıkları Dergisi, 49, 71-75. 20. Jones A.P., 1999, Indoor Air Quality and Health, Atmospheric Environment, 33, 28, 4535-4564. https://doi.org/10.1016/S1352-2310(99)00272-1 21. Smith, B., Bristow, V., 1994, Indoor Air Quality And Textiles:An Emerging Issue, American Dyestuff Reporter, 83, 37-46. 22. Elkilani, A., Bouhamra, W., Crittenden, B.D., (2001), An Indoor Air Quality Model That Includes The Sorption of VOCs on Fabrics, Instituon of Chemical Engineers Trans IChemE, 79, 233-243. https://doi.org/10.1205/095758201750362271 23. EPA, An Introduction to Indoor Air Quality, http://www. epa.gov/indoor-air-quality-iaq/introduction-indoor-air-quality, Erişim Tarihi: 9 Mart 2016. 24. Joshi, S.M., 2008, The Sick Building Syndrome, Indian J Occup Environ Med., 12, 2, 61-64. https://doi.org/10.4103/0019-5278.43262 25. Obee, T.N., Brown, R.T., (1995), TiO2 Photocatalysis for Indoor Air Applications Effects of Humidity and Trace Contaminant Levels on the Oxidation Rates of Formaldehyde, Toluene, and 1,3-Butadiene, Environmental Science & Technology, 29, 5, 1223-1231. https://doi.org/10.1021/es00005a013 26. Mo J., Zhang, Y., Xu, Q., Lamson, J.J., Zhao, R., (2009), Photocatalytic Purification of Volatile Organic Compounds in Indoor Air: A Literature Review, Atmospheric Environment, 43, 14, 2229–2246. https://doi.org/10.1016/j.atmosenv.2009.01.034 27. Kwong, C., Chao, C.Y.H., Hui, K.S., Wan, M.P., (2008), Removal of VOCs from Indoor Environment by Ozonation Over Different Porous Materials, Atmospheric Environment, 42, 2300-2311. https://doi.org/10.1016/j.atmosenv.2007.12.030 28. Durme, V.J., Dewulf, J., Sysmans, W., Leys, C., Langenhove, V.H., (2007), Efficient Toluene Abatement in Indoor Air by a Plasma Catalytic Hybrid System, Applied Catalysis B : Environmental, 74, 1-2, 161-169. 29. Parmar, S.S., Grosjean, D., (1991), Sorbent Removal of Air Pollutants from Museum Display Cases, Environment International, 17, 39-50. https://doi.org/10.1016/0160-4120(91)90336-O 30. Adamson, A.W., Gast, A.P., (1997), Physical Chemistry of Surfaces, John Wiley&Sons, Canada. 31. EPA, (1999), Catc Technical Bulletin-Choosing An Adsorption System for VOC: Carbon, Zeolite, or Polymers, https:// www3. epa.gov/ttn/catc/dir1/fadsorb.pdf, Erişim Tarihi: 20 Temmuz 2016. 32. Marć, M., ZabiegaÅ‚a, B., NamieÅ›nik, J., (2012), Testing and Sampling Devices for Monitoring Volatile and Semi-Volatile Organic Compounds in Indoor Air, Trends In Analytical Chemistry, 32, 76-86. https://doi.org/10.1016/j.trac.2011.09.006 33. ASTM D5116-10, (2010), Standard Guide for Small-Scale Environmental Chamber Determinations of Organic Emissions from Indoor Materials/Products. 34. Uhde, E., Salthammer, T., (2007), Impact of Reaction Products from Building Materials and Furnishings on Indoor Air Quality—A Review of Recent Advances in Indoor Chemistry, Atmospheric Environment, 41, 15, 3111–3128. https://doi.org/10.1016/j.atmosenv.2006.05.082 35. ASTM D6670-13, (2013), Standard Practice for Full-Scale Chamber Determination of Volatile Organic Emissions from Indoor Materials/Products. 36. New Zealand Merino Company Limited, Control of Indoor Air Pollution, http://www.campaignforwool.co.nz/wpcontent/uploads/2011/12/CONTROL-OF-INDOOR-AIRPOLLUTION.pdf, Erişim Tarihi: 9 Mart 2016. 37. Carpet Institute of Australia Limited, Consumer Health Information – Indoor Air Quality, ExEx 14098, (www.carpetinstitute.com.au) http://www.carpetinstitute.com.au/good_health/, Erişim Tarihi: 10 Aralık 2013. 38. Wool Carpet and Indoor Air Quality, http://www.kashoucarpets. com/IAQ.pdf, Erişim Tarihi: 9 Mart 2016. 39. Triped J., Sanongraj W., Oonkhanond B., Sanongraj S., (2009), Synthesis of Silk Fibroin Fiber for Indoor Air Particulate Removal, International Journal of Civil and Environmental Engineering, 3, 3, 122-127. 40. Gregory, C. J., (1968), Adsorption of Atmospheric Sulfur Dioxide by Natural and Synthetic Textile Fibers, Rutgers University, New Brunswick. 41. Walters, B., Goswami, B., Vigo, T.L., (1983), Sorption of Air Pollutants onto Textiles, Textile Research Journal, 53, 354. https://doi.org/10.1177/004051758305300605 42. Plens, A.C.O., Monaro, D.L.G., Coutinho, A.R., (2015), Adsorption of SOX and NOX in Activated Viscose Fibers, An Acad Bras Cienc, 87, 2, 1149-1160. https://doi.org/10.1590/0001-3765201520140346 43. Rong, H., Ryu, Z., Zheng, J., Zhang, Y., (2003), Influence of Heat Treatment of Rayon-Based Activated Carbon Fibers on The Adsorption of Formaldehyde, Journal of Colloid and Interface Science, 261, 2, 207–212. https://doi.org/10.1016/S0021-9797(03)00099-7 44. Miyawaki, J., Lee, G.H., Yeh, J., Shiratory, N., Shimohara, T., Mochida, S.H., (2012), Development of Carbon-supported Hybrid Catalyst for Clean Removal of Formaldehyde Indoors, 185, 278283. 45. Johnson, N.A.G., Wood, E.J., Ingham, P.E., McNeil, S.J., McFarlane, I.D., (2003), Wool as a Technical Fibre, Journal of The Textile Institute, 94, 3-4, 26-41. https://doi.org/10.1080/00405000308630625 46. Causer S.M., Mcmillan R.C., Bryson W.G., (1995), The Role of Wool Carpets in Controlling Indoor Air Pollutions, The 9th International Wool Textile Research Conference. 47. Walsh, M., Black, A., Morgan, A., (1977), Sorption of SO2 by Typical Indoor Surfaces Including Wool Carpets, Wallpaper and Paint, Atmospheric Enviroment, 2, 11. https://doi.org/10.1016/0004-6981(77)90242-6 48. Wilson, M.J.G., (1968), Indoor Air Pollution, Proc. Roy Soc., 300, 215-221. https://doi.org/10.1098/rspa.1968.0185 49. Spicer, C.W., Coutant, R.W., Ward, G.F., Joseph, D.W., (1989), Rates and Mechanisms of NO2 Removal from Indoor Air by Residential Materials, Environment International, 15, 643-654. https://doi.org/10.1016/0160-4120(89)90087-1 50. Tanada, S., Kawasaki, N., Nakamura, T., Araki, M., Isomura, M., (1999), Removal of Formaldehyde by Activated Carbons Containing Amino Groups, Journal of Colloid and Interface Science, 214, 1, 106–108. https://doi.org/10.1006/jcis.1999.6176 51. Agarwal, M., Dave, M., Upadhayaya, S., (2011), Adsorption of Formaldehyde on Treated Activated Carbon and Activated Alumina, Current World Environment, 6, 1, 53-59. 52. Huang X., Wang Y.J., Di Y.H., (2007), Experimental Study of Wool Fiber on Purification of Indoor Air, Textile Research Journal, 77, 12, 946-950. https://doi.org/10.1177/0040517507083519